共查询到19条相似文献,搜索用时 130 毫秒
1.
2.
为了降低特征冗余,提高移动用户行为识别的准确率,提出一种基于蚁群算法的移动用户行为识别加速度信号特征优选方法。首先对样本数据进行预处理,根据特征对不同行为的分类敏感度进行初次优选,降低特征搜索空间的维度;然后利用蚁群算法结合神经网络分类器,以特征的分类准确度为评价准则对特征集合进行了二次优选。实验结果表明,该方法优选出的特征集具有较好的识别性能。 相似文献
3.
《武汉大学学报(工学版)》2014,(4):571-576
为了实现对公共区域等特定场所下的人体正常行走、跑动、挥拳、双手挥舞等人体行为的识别,提出了一种基于时空局部特征融合的人体行为识别方法.首先,对各种目标行为建立样本库,将不同类别的目标行为样本作为先验知识,以此训练支持向量机;然后通过高斯混合模型来检测运动前景,接着提取运动目标的区域特征和运动特征,通过K-L离散变换对两者进行特征融合;最后结合支持向量机具有全局最优性和较好泛化能力的特点,进行小样本的多目标行为分类识别,并和BP神经网络的识别效果进行比较.实验结果表明,SVM的识别率优于BP神经网络,其平均识别率可达96%. 相似文献
4.
目前,牛身识别技术大多采用卷积神经网络(Convolutional Neural Networks, CNN),CNN只能处理局部邻域信息,容易丢失细节信息。为此,提出一种基于局部特征融合Transformer的牛身识别算法。首先,运用卷积将相邻空间内的牛身局部信息进行融合,增强融合后局部特征信息在不同姿态下的辨别力和鲁棒性;其次,将融合后的局部信息和全局分类信息通过数个多层感知机模块进行分类训练,损失函数采用三元组和标签平滑交叉熵损失,有效提高了牛只多姿态场景下特征的提取。仿真实验结果表明,在复杂场景下,与基于CNN的牛身识别算法相比,提出的算法有效降低了拒识率,提高了Top1排序性能和AUC值。 相似文献
5.
6.
手指平移、轴旋转等特殊姿态变化时,指静脉识别算法的识别率并不高,为此,提出一种融合全局与局部特征网络的指静脉识别算法。首先,根据特殊姿态指静脉图像全局静脉信息差异较大而局部显著静脉信息相似度较高的特点,通过多分支网络结构学习不同粒度下的全局特征与局部特征并进行融合识别,提高了指静脉特征对手指放置姿态变化的鲁棒性;其次,使用CurricularFace损失以及交叉熵损失对网络进行联合监督,扩大指静脉特征类间差,缩小类内差,并引入在线困难样本挖掘机制,使得网络重点训练手指姿态变化较大的样本,进一步提高了算法在手指出现平移、轴旋转等姿态变化时的识别率;最后,采用Mish激活函数作为激活层,提高了网络提取指静脉特征的能力。分别在FV-USM数据集、FV-Normal数据集、FV-Special数据集上进行仿真实验,结果表明,相比于指静脉改进残差网络算法,提出算法的零误识识别率分别提高了11.33%,8.11%,22.57%,Top1排序分别提升了4.00%,4.96%,12.23%。 相似文献
7.
本文方法首先从视频中提取出代表足够运动信息的时空兴趣点,并通过人体前景剪影连通性分析判别时空兴趣点的点集范围。然后对每个视频的兴趣点样本进行高斯混合聚类生成时空单词。最后对时空单词进行训练得到每个行为的高斯混合模型用于人体行为的识别。该方法既可用于单人行为识别也可用于双人行为识别。在行为库上的实验结果证明了该方法有较高的正确率。 相似文献
8.
基于结构模型和主元分析法的行为识别 总被引:1,自引:0,他引:1
杨强 《苏州科技学院学报(工程技术版)》2009,22(3):75-77
分析了动作场景的检测方法,然后建立了人体运动结构模型,并结合人体肤色和主元分析法实现了人体动作识别.实验表明,对于简单场景的人体基本动作有较好的识别效果. 相似文献
9.
本文提出了改进的LBF模型的轮廓演化能量函数,它结合了CV模型的能量项加快了演化速度,并在结合LBF模型中的局部均值信息的同时,引入图像的局部方差和全局方差信息.实验结果证明该方法能够提供准确的光滑的闭合的边界,精度可以达到亚像素级,系统的识别准确率高. 相似文献
10.
人体行为识别一直是计算机视觉研究中的热点.随着近几年人体行为识别在虚拟现实、短视频等方面的广泛应用, 以及深度学习算法的快速发展, 基于深度学习的行为识别算法层出不穷.相较于传统方法, 基于深度学习的行为识别算法具有鲁棒性强、准确率高的优点.基于此, 本文对近年来提出的基于深度学习的行为识别算法进行了梳理, 并对由双流卷积网络和3D卷积网络结构发展而来的行为识别的系列算法进行了重点介绍, 并总结了各种算法的性能和成果, 最后对该领域进行了展望. 相似文献
11.
面向人体动作识别的局部特征时空编码方法 总被引:2,自引:0,他引:2
为克服BoF特征袋模型在视频人体动作识别中忽视局部特征间时空位置关系的问题,本文提出局部特征时空编码方法。将局部特征时空位置坐标引入特征编码中,直接对它们的时空位置关系建模。首先,将局部特征投影到人体运动子时空域,获得局部特征的时空位置坐标;然后,在特征编码阶段同时对局部特征的出现信息和时空位置坐标进行编码;最后,采用特征池提取该时空域内局部特征的统计信息用于动作分类。为进一步提高性能,多尺度时空编码和局部约束时空编码方法也一并被提出,并在分类阶段采用局部约束块稀疏表示分类方法提高动作识别精度。在KTH, Weizmann, UCF sports等标准测试集的实验表明,本文算法能够有效表示局部特征间时空位置关系、提高动作识别精度。 相似文献
12.
基于局部特征的图像模式识别算法研究 总被引:1,自引:0,他引:1
崔星华 《吉林建筑工程学院学报》2014,(6):52-54
本文对基于局部特征的图像模式识别的SIFT/SURF算法进行了详细描述及分析,对比两种算法的不同特点,即运算速度、收敛性、抗噪性等,并对两种算法进行了实验.实验结果对于算法改进具有显著的借鉴意义. 相似文献
13.
针对全局特征描述过分依赖精确定位、背景减除和跟踪技术等问题,同时也为了解决视角变化、噪声和遮挡等干扰带来的影响,对基于局部特征描述的视频人体动作识别方法进行了研究,提出了一种基于判别性区域提取的视频人体动作识别方法.首先通过迭代训练和筛选过程对视频的内容进行分析和学习,自动提取视频中有代表性和区分性的判别性区域,然后使用词袋模型对提取到的判别性区域进行统计和描述,最后采用支持向量机方法确定人体运动的类型.在KTH和Youtube数据集上分别对提出的方法进行了论证,结果表明:该方法具有较高的识别准确率,同时对复杂背景等干扰不敏感. 相似文献
14.
局部二元模式即LBP(local binary patterns),是一种有效的纹理描述算子,能够很好地提取人脸表情特征信息.针对原始LBP算子仅考虑中心像素点与邻域像素点的灰度差异的问题,对其进行了改进,提出了多重中心化二值模式MLBP(multiple local binary patterns),并将改进后的MLBP算子进行人脸表情识别,通过改进前后在JAFFE人脸库的实验比较,该方法在识别率上取得了较好的效果. 相似文献
15.
基于改进的核判别分析的人脸识别算法研究 总被引:1,自引:0,他引:1
赵颖 《哈尔滨理工大学学报》2010,15(3):19-22
由于目前面临光照、表情、姿态等影响,人脸识别是计算机视觉领域中的一个难题.由于人脸图像蕴含着丰富的纹理信息,充分利用纹理特征也是提高人脸识别算法的有效方法.利用图像处理中信号处理和学习两种方法的优势,提出了基于Gabor小波和KDCV相结合的图像特征提取算法.首先利用小波分析提取人脸图像的纹理特征,然后用改进的核判别分析方法对提取的纹理特征进行降维,用降维后的数据作为人脸识别的特征.通过仿真实验表明,改进的核判别分析算法可有效提高人脸识别正确率,提高算法的实际应用性. 相似文献
16.
一种基于局部颜色特征的图像检索方法 总被引:1,自引:0,他引:1
提出一种基于局部颜色特征的图像检索算法.该算法首先采用一种新的方法对图像进行分块,提取图像中心区域的主颜色和其他区域的平均颜色作为颜色特征,然后根据图像中心的重要性,对图像各个分块采用不同的加权系数,使局部图像的特征矢量被增强,从而提高了图像的检索精度.实验结果表明,这种基于局部颜色特征的图像检索算法适合于画面明显按分块变化的图像. 相似文献
17.
WiFi信道状态信息(CSI)被广泛应用于被动式(非侵入式)人体行为判断,为使用现有商用设备实现人体连续动作计数与识别,提出了一种Wi-ACR方法.先利用阈值和活动指标检测出一组连续动作发生的区间和时间,再通过peak-find算法统计出动作的数量,并确定每个动作的开始和结束时间;再分别采用基于波形特征的动作识别模型和基于统计特征的动作识别模型,得到动作识别结果.实验评估结果表明,Wi-ACR对动作计数的准确率可达95%,两类识别模型对于2个动作(深蹲和走)的平均识别精准率为90%. 相似文献
18.
深度视频中的人体行为的识别研究主要集中在对深度视频进行特征表示上,为了获得具有判别性的特征表示,首先提出了深度视频中一种基于表面法向信息的局部二值模式( local binary pattern, LBP)算子作为初级特征,然后基于稀疏表示模型训练初级特征字典,获取初级特征的稀疏表示,最后对用自适应的时空金字塔划分的若干个子序列使用时空池化方法进行初级特征与稀疏系数的规格化,得到深度视频的高级特征,最终的特征表示实现了深度视频中的准确的人体行为识别。在公开的动作识别库MSR Action3D和手势识别库MSR Gesture3D上的实验证明了本文提出的特征表示的有效性和优越性。 相似文献
19.
奇异特征区域在人脸直方图匹配过程具有更高的可分辨性。基于此,在人脸直方图特征匹配算法的基础上提出一种基于缩放因子的人脸直方图特征距离度量方法。该方法通过缩小直方图距离较近区域的距离、放大直方图距离较远区域的距离,并在匹配中突出高可分辨性区域,以获得更高的识别精度。实验表明该方法可以显著提高各种局部特征提取方法和直方图距离度量算法在人脸识别中的精度。 相似文献