首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on sensitivity analysis of results from computer models in which both epistemic and aleatory uncertainties are present. Sensitivity is defined in the sense of “uncertainty importance” in order to identify and to rank the principal sources of epistemic uncertainty. A natural and consistent way to arrive at sensitivity results in such cases would be a two-dimensional or double-loop nested Monte Carlo sampling strategy in which the epistemic parameters are sampled in the outer loop and the aleatory variables are sampled in the nested inner loop. However, the computational effort of this procedure may be prohibitive for complex and time-demanding codes. This paper therefore suggests an approximate method for sensitivity analysis based on particular one-dimensional or single-loop sampling procedures, which require substantially less computational effort. From the results of such sampling one can obtain approximate estimates of several standard uncertainty importance measures for the aleatory probability distributions and related probabilistic quantities of the model outcomes of interest. The reliability of the approximate sensitivity results depends on the effect of all epistemic uncertainties on the total joint epistemic and aleatory uncertainty of the outcome. The magnitude of this effect can be expressed quantitatively and estimated from the same single-loop samples. The higher it is the more accurate the approximate sensitivity results will be. A case study, which shows that the results from the proposed approximate method are comparable to those obtained with the full two-dimensional approach, is provided.  相似文献   

2.
There will be simplifying assumptions and idealizations in the availability models of complex processes and phenomena. These simplifications and idealizations generate uncertainties which can be classified as aleatory (arising due to randomness) and/or epistemic (due to lack of knowledge). The problem of acknowledging and treating uncertainty is vital for practical usability of reliability analysis results. The distinction of uncertainties is useful for taking the reliability/risk informed decisions with confidence and also for effective management of uncertainty. In level-1 probabilistic safety assessment (PSA) of nuclear power plants (NPP), the current practice is carrying out epistemic uncertainty analysis on the basis of a simple Monte-Carlo simulation by sampling the epistemic variables in the model. However, the aleatory uncertainty is neglected and point estimates of aleatory variables, viz., time to failure and time to repair are considered. Treatment of both types of uncertainties would require a two-phase Monte-Carlo simulation, outer loop samples epistemic variables and inner loop samples aleatory variables. A methodology based on two-phase Monte-Carlo simulation is presented for distinguishing both the kinds of uncertainty in the context of availability/reliability evaluation in level-1 PSA studies of NPP.  相似文献   

3.
The ‘Epistemic Uncertainty Workshop’ sponsored by Sandia National Laboratories was held in Albuquerque, New Mexico, on 6–7 August 2002. The workshop was organized around a set of Challenge Problems involving both epistemic and aleatory uncertainty that the workshop participants were invited to solve and discuss. This concluding article in a special issue of Reliability Engineering and System Safety based on the workshop discusses the intent of the Challenge Problems, summarizes some discussions from the workshop, and provides a technical comparison among the papers in this special issue. The Challenge Problems were computationally simple models that were intended as vehicles for the illustration and comparison of conceptual and numerical techniques for use in analyses that involve: (i) epistemic uncertainty, (ii) aggregation of multiple characterizations of epistemic uncertainty, (iii) combination of epistemic and aleatory uncertainty, and (iv) models with repeated parameters. There was considerable diversity of opinion at the workshop about both methods and fundamental issues, and yet substantial consensus about what the answers to the problems were, and even about how each of the four issues should be addressed. Among the technical approaches advanced were probability theory, Dempster–Shafer evidence theory, random sets, sets of probability measures, imprecise coherent probabilities, coherent lower previsions, probability boxes, possibility theory, fuzzy sets, joint distribution tableaux, polynomial chaos expansions, and info-gap models. Although some participants maintained that a purely probabilistic approach is fully capable of accounting for all forms of uncertainty, most agreed that the treatment of epistemic uncertainty introduces important considerations and that the issues underlying the Challenge Problems are legitimate and significant. Topics identified as meriting additional research include elicitation of uncertainty representations, aggregation of multiple uncertainty representations, dependence and independence, model uncertainty, solution of black-box problems, efficient sampling strategies for computation, and communication of analysis results.  相似文献   

4.
Epistemic and aleatory uncertain variables always exist in multidisciplinary system simultaneously and can be modeled by probability and evidence theories, respectively. The propagation of uncertainty through coupled subsystem and the strong nonlinearity of the multidisciplinary system make the reliability analysis difficult and computational cost expensive. In this paper, a novel reliability analysis procedure is proposed for multidisciplinary system with epistemic and aleatory uncertain variables. First, the probability density function of the aleatory variables is assumed piecewise uniform distribution based on Bayes method, and approximate most probability point is solved by equivalent normalization method. Then, important sampling method is used to calculate failure probability and its variance and variation coefficient. The effectiveness of the procedure is demonstrated by two numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project.  相似文献   

6.
Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack of knowledge. When both aleatory and epistemic uncertainties are mixed, it is desirable to maintain a segregation between aleatory and epistemic sources such that it is easy to separate and identify their contributions to the total uncertainty. Current production analyses for mixed UQ employ the use of nested sampling, where each sample taken from epistemic distributions at the outer loop results in an inner loop sampling over the aleatory probability distributions. This paper demonstrates new algorithmic capabilities for mixed UQ in which the analysis procedures are more closely tailored to the requirements of aleatory and epistemic propagation. Through the combination of stochastic expansions for computing statistics and interval optimization for computing bounds, interval-valued probability, second-order probability, and Dempster-Shafer evidence theory approaches to mixed UQ are shown to be more accurate and efficient than previously achievable.  相似文献   

7.
工程设计中往往需要同时处理固有不确定性与认知不确定性。对于固有不确定性分析与量化,国内外已有诸多研究,例如MonteCarlo方法、正交多项式展开理论和概率密度演化理论等。而对认知不确定性、特别是固有不确定性与认知不确定性耦合情况下的研究,则还相对缺乏。该文中,针对数据稀缺与数据更新导致的认知不确定性,首先分别引入Bootstrap方法和Bayes更新方法进行不确定性表征。在此基础上,结合基于概率密度演化-测度变换的两类不确定性量化统一理论新框架,提出了存在认知不确定性情况下的不确定性传播与可靠性分析高效方法及其具体数值算法。由此,给出了基于数据进行工程系统不确定性量化、传播与可靠性分析的基本途径。通过具有工程实际数据的3个工程实例分析,包括无限边坡稳定性分析、挡土墙稳定性分析和屋面桁架结构可靠性分析,验证了该文方法的精度和效率。  相似文献   

8.
Assessing the failure probability of a thermal–hydraulic (T–H) passive system amounts to evaluating the uncertainties in its performance. Two different sources of uncertainties are usually considered: randomness due to inherent variability in the system behavior (aleatory uncertainty) and imprecision due to lack of knowledge and information on the system (epistemic uncertainty).In this paper, we are concerned with the epistemic uncertainties affecting the model of a T–H passive system and the numerical values of its parameters. Due to these uncertainties, the system may find itself in working conditions that do not allow it to accomplish its functions as required. The estimation of the probability of these functional failures can be done by Monte Carlo (MC) sampling of the epistemic uncertainties affecting the model and its parameters, followed by the computation of the system function response by a mechanistic T–H code.Efficient sampling methods are needed for achieving accurate estimates, with reasonable computational efforts. In this respect, the recently developed Line Sampling (LS) method is here considered for improving the MC sampling efficiency. The method, originally developed to solve high-dimensional structural reliability problems, employs lines instead of random points in order to probe the failure domain of interest. An “important direction” is determined, which points towards the failure domain of interest; the high-dimensional reliability problem is then reduced to a number of conditional one-dimensional problems which are solved along the “important direction”. This allows to significantly reduce the variance of the failure probability estimator, with respect to standard random sampling.The efficiency of the method is demonstrated by comparison to the commonly adopted Latin Hypercube Sampling (LHS) and first-order reliability method (FORM) in an application of functional failure analysis of a passive decay heat removal system in a gas-cooled fast reactor (GFR) of literature.  相似文献   

9.
Optimization leads to specialized structures which are not robust to disturbance events like unanticipated abnormal loading or human errors. Typical reliability-based and robust optimization mainly address objective aleatory uncertainties. To date, the impact of subjective epistemic uncertainties in optimal design has not been comprehensively investigated. In this paper, we use an independent parameter to investigate the effects of epistemic uncertainties in optimal design: the latent failure probability. Reliability-based and risk-based truss topology optimization are addressed. It is shown that optimal risk-based designs can be divided in three groups: (A) when epistemic uncertainty is small (in comparison to aleatory uncertainty), the optimal design is indifferent to it and yields isostatic structures; (B) when aleatory and epistemic uncertainties are relevant, optimal design is controlled by epistemic uncertainty and yields hyperstatic but nonredundant structures, for which expected costs of direct collapse are controlled; (C) when epistemic uncertainty becomes too large, the optimal design becomes redundant, as a way to control increasing expected costs of collapse. The three regions above are divided by hyperstatic and redundancy thresholds. The redundancy threshold is the point where the structure needs to become redundant so that its reliability becomes larger than the latent reliability of the simplest isostatic system. Simple truss topology optimization is considered herein, but the conclusions have immediate relevance to the optimal design of realistic structures subject to aleatory and epistemic uncertainties.  相似文献   

10.
The following techniques for uncertainty and sensitivity analysis are briefly summarized: Monte Carlo analysis, differential analysis, response surface methodology, Fourier amplitude sensitivity test, Sobol' variance decomposition, and fast probability integration. Desirable features of Monte Carlo analysis in conjunction with Latin hypercube sampling are described in discussions of the following topics: (i) properties of random, stratified and Latin hypercube sampling, (ii) comparisons of random and Latin hypercube sampling, (iii) operations involving Latin hypercube sampling (i.e. correlation control, reweighting of samples to incorporate changed distributions, replicated sampling to test reproducibility of results), (iv) uncertainty analysis (i.e. cumulative distribution functions, complementary cumulative distribution functions, box plots), (v) sensitivity analysis (i.e. scatterplots, regression analysis, correlation analysis, rank transformations, searches for nonrandom patterns), and (vi) analyses involving stochastic (i.e. aleatory) and subjective (i.e. epistemic) uncertainty.  相似文献   

11.
This paper develops a novel computational framework to compute the Sobol indices that quantify the relative contributions of various uncertainty sources towards the system response prediction uncertainty. In the presence of both aleatory and epistemic uncertainty, two challenges are addressed in this paper for the model-based computation of the Sobol indices: due to data uncertainty, input distributions are not precisely known; and due to model uncertainty, the model output is uncertain even for a fixed realization of the input. An auxiliary variable method based on the probability integral transform is introduced to distinguish and represent each uncertainty source explicitly, whether aleatory or epistemic. The auxiliary variables facilitate building a deterministic relationship between the uncertainty sources and the output, which is needed in the Sobol indices computation. The proposed framework is developed for two types of model inputs: random variable input and time series input. A Bayesian autoregressive moving average (ARMA) approach is chosen to model the time series input due to its capability to represent both natural variability and epistemic uncertainty due to limited data. A novel controlled-seed computational technique based on pseudo-random number generation is proposed to efficiently represent the natural variability in the time series input. This controlled-seed method significantly accelerates the Sobol indices computation under time series input, and makes it computationally affordable.  相似文献   

12.
In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. A previous presentation, “Quantification of Margins and Uncertainties: Conceptual and Computational Basis,” describes the basic ideas that underlie QMU and illustrates these ideas with two notional examples that employ probability for the representation of aleatory and epistemic uncertainty. The current presentation introduces and illustrates the use of interval analysis, possibility theory and evidence theory as alternatives to the use of probability theory for the representation of epistemic uncertainty in QMU-type analyses. The following topics are considered: the mathematical structure of alternative representations of uncertainty, alternative representations of epistemic uncertainty in QMU analyses involving only epistemic uncertainty, and alternative representations of epistemic uncertainty in QMU analyses involving a separation of aleatory and epistemic uncertainty. Analyses involving interval analysis, possibility theory and evidence theory are illustrated with the same two notional examples used in the presentation indicated above to illustrate the use of probability to represent aleatory and epistemic uncertainty in QMU analyses.  相似文献   

13.
Earthquake loss estimation procedures exhibit aleatory and epistemic uncertainty imbedded in their various components; i.e. seismic hazard, structural fragility, and inventory data. Since these uncertainties significantly affect decision-making, they have to be considered in loss estimation to inform decision- and policymakers and to ensure a balanced view of the various threats to which society may be subjected. This paper reviews the uncertainties that affect earthquake loss estimation and proposes a simple framework for probabilistic uncertainty assessment suitable for use after obtaining impact results from existing software, such as HAZUS-MH. To avoid the extensive calculations required for Monte Carlo simulation-based approaches, this study develops an approximate method for uncertainty propagation based on modifying the quantile arithmetic methodology, which allows for acceptable uncertainty estimates with limited computational effort. A verification example shows that the results by the approximation approach are in good agreement with the equivalent Monte Carlo simulation outcome. Finally, the paper demonstrates the proposed procedure for probabilistic loss assessment through a comparison with HAZUS-MH results. It is confirmed that the proposed procedure consistently gives reasonable estimates.  相似文献   

14.
Reliability analysis with both aleatory and epistemic uncertainties is investigated in this paper. The aleatory uncertainties are described with random variables, and epistemic uncertainties are tackled with evidence theory. To estimate the bounds of failure probability, several methods have been proposed. However, the existing methods suffer the dimensionality challenge of epistemic variables. To get rid of this challenge, a so‐called random‐set based Monte Carlo simulation (RS‐MCS) method derived from the theory of random sets is offered. Nevertheless, RS‐MCS is also computational expensive. So an active learning Kriging (ALK) model that only rightly predicts the sign of performance function is introduced and closely integrated with RS‐MCS. The proposed method is termed as ALK‐RS‐MCS. ALK‐RS‐MCS accurately predicts the bounds of failure probability using as few function calls as possible. Moreover, in ALK‐RS‐MCS, an optimization method based on Karush–Kuhn–Tucker conditions is proposed to make the estimation of failure probability interval more efficient based on the Kriging model. The efficiency and accuracy of the proposed approach are demonstrated with four examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The traditional reliability analysis method based on probabilistic method requires probability distributions of all the uncertain parameters. However, in practical applications, the distributions of some parameters may not be precisely known due to the lack of sufficient sample data. The probabilistic theory cannot directly measure the reliability of structures with epistemic uncertainty, ie, subjective randomness and fuzziness. Hence, a hybrid reliability analysis (HRA) problem will be caused when the aleatory and epistemic uncertainties coexist in a structure. In this paper, by combining the probability theory and the uncertainty theory into a chance theory, a probability‐uncertainty hybrid model is established, and a new quantification method based on the uncertain random variables for the structural reliability is presented in order to simultaneously satisfy the duality of random variables and the subadditivity of uncertain variables; then, a reliability index is explored based on the chance expected value and variance. Besides, the formulas of the chance theory‐based reliability and reliability index are derived to uniformly assess the reliability of structures under the hybrid aleatory and epistemic uncertainties. The numerical experiments illustrate the validity of the proposed method, and the results of the proposed method can provide a more accurate assessment of the structural system under the mixed uncertainties than the ones obtained separately from the probability theory and the uncertainty theory.  相似文献   

16.
Computational simulation methods have advanced to a point where simulation can contribute substantially in many areas of systems analysis. One research challenge that has accompanied this transition involves the characterization of uncertainty in both computer model inputs and the resulting system response. This article addresses a subset of the ‘challenge problems’ posed in [Challenge problems: uncertainty in system response given uncertain parameters, 2001] where uncertainty or information is specified over intervals of the input parameters and inferences based on the response are required. The emphasis of the article is to describe and illustrate a method for performing tasks associated with this type of modeling ‘economically’-requiring relatively few evaluations of the system to get a precise estimate of the response. This ‘response-modeling approach’ is used to approximate a probability distribution for the system response. The distribution is then used: (1) to make inferences concerning probabilities associated with response intervals and (2) to guide in determining further, informative, system evaluations to perform.  相似文献   

17.
This paper develops a methodology to assess the validity of computational models when some quantities may be affected by epistemic uncertainty. Three types of epistemic uncertainty regarding input random variables - interval data, sparse point data, and probability distributions with parameter uncertainty - are considered. When the model inputs are described using sparse point data and/or interval data, a likelihood-based methodology is used to represent these variables as probability distributions. Two approaches - a parametric approach and a non-parametric approach - are pursued for this purpose. While the parametric approach leads to a family of distributions due to distribution parameter uncertainty, the principles of conditional probability and total probability can be used to integrate the family of distributions into a single distribution. The non-parametric approach directly yields a single probability distribution. The probabilistic model predictions are compared against experimental observations, which may again be point data or interval data. A generalized likelihood function is constructed for Bayesian updating, and the posterior distribution of the model output is estimated. The Bayes factor metric is extended to assess the validity of the model under both aleatory and epistemic uncertainty and to estimate the confidence in the model prediction. The proposed method is illustrated using a numerical example.  相似文献   

18.
Performance assessment of complex systems is ideally done through full system-level testing which is seldom available for high consequence systems. Further, a reality of engineering practice is that some features of system behavior are not known from experimental data, but from expert assessment, only. On the other hand, individual component data, which are part of the full system are more readily available. The lack of system level data and the complexity of the system lead to a need to build computational models of a system in a hierarchical or building block approach (from simple components to the full system). The models are then used for performance prediction in lieu of experiments, to estimate the confidence in the performance of these systems. Central to this are the need to quantify the uncertainties present in the system and to compare the system response to an expected performance measure. This is the basic idea behind Quantification of Margins and Uncertainties (QMU). QMU is applied in decision making—there are many uncertainties caused by inherent variability (aleatoric) in materials, configurations, environments, etc., and lack of information (epistemic) in models for deterministic and random variables that influence system behavior and performance. This paper proposes a methodology to quantify margins and uncertainty in the presence of both aleatoric and epistemic uncertainty. It presents a framework based on Bayes networks to use available data at multiple levels of complexity (i.e. components, subsystem, etc.) and demonstrates a method to incorporate epistemic uncertainty given in terms of intervals on a model parameter.  相似文献   

19.
The paper describes an approach to representing, aggregating and propagating aleatory and epistemic uncertainty through computational models. The framework for the approach employs the theory of imprecise coherent probabilities. The approach is exemplified by a simple algebraic system, the inputs of which are uncertain. Six different uncertainty situations are considered, including mixtures of epistemic and aleatory uncertainty.  相似文献   

20.
Error and uncertainty in modeling and simulation   总被引:1,自引:0,他引:1  
This article develops a general framework for identifying error and uncertainty in computational simulations that deal with the numerical solution of a set of partial differential equations (PDEs). A comprehensive, new view of the general phases of modeling and simulation is proposed, consisting of the following phases: conceptual modeling of the physical system, mathematical modeling of the conceptual model, discretization and algorithm selection for the mathematical model, computer programming of the discrete model, numerical solution of the computer program model, and representation of the numerical solution. Our view incorporates the modeling and simulation phases that are recognized in the systems engineering and operations research communities, but it adds phases that are specific to the numerical solution of PDEs. In each of these phases, general sources of uncertainty, both aleatory and epistemic, and error are identified. Our general framework is applicable to any numerical discretization procedure for solving ODEs or PDEs. To demonstrate this framework, we describe a system-level example: the flight of an unguided, rocket-boosted, aircraft-launched missile. This example is discussed in detail at each of the six phases of modeling and simulation. Two alternative models of the flight dynamics are considered, along with aleatory uncertainty of the initial mass of the missile and epistemic uncertainty in the thrust of the rocket motor. We also investigate the interaction of modeling uncertainties and numerical integration error in the solution of the ordinary differential equations for the flight dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号