首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports the effects of a novel polyunsaturated 3-thia fatty acid, methyl 3-thiaoctadeca-6,9,12,15-tetraenoate on serum lipids and key enzymes in hepatic fatty acid metabolism compared to a saturated 3-thia fatty acid, tetradecylthioacetic acid. Palmitic acid treated rats served as controls. Fatty acids were administered by gavage in daily doses of 150 mg/kg body weight for 10 days. The aim of the present study was: (a) To investigate the effect of a polyunsaturated 3-thia fatty acid ester, methyl 3-thiaoctadeca-6,9,12,15-tetraenoate on plasma lipids in normolipidemic rats: (b) to verify whether the lipid-lowering effect could be consistent with enhanced fatty acid oxidation: and (c) to study whether decreased activity of esterifying enzymes and diversion to phospholipid synthesis is a concerted mechanism in limiting the availability of free fatty acid as a substrate for hepatic triglyceride formation. Repeated administration of the polyunsaturated 3-thia fatty acid ester for 10 days resulted in a reduction of plasma triglycerides (40%), cholesterol (33%) and phospholipids (20%) compared to controls. Administration of polyunsaturated and saturated 3-thia fatty acids (daily doses of 150 mg/kg body weight) reduced levels of lipids to a similar extent and followed about the same time-course. Both mitochondrial and peroxisomal fatty acid oxidation increased (1.4-fold- and 4.2-fold, respectively) and significantly increased activities of carnitine palmitoyltransferase (CPT) (1.6-fold), 2,4-dienoyl-CoA reductase (1.2-fold) and fatty acyl-CoA oxidase (3.0-fold) were observed in polyunsaturated 3-thia fatty acid treated animals. This was accompanied by increased CPT-II mRNA (1.7-fold). 2,4-dienoyl-CoA reductase mRNA (2.9-fold) and fatty acyl-CoA oxidase mRNA (1.7-fold). Compared to controls, the hepatic triglyceride biosynthesis was retarded as indicated by a decrease in liver triglyceride content (40%). The activities of glycerophosphate acyltransferase, acyl-CoA: 1,2-diacylglycerol acyltransferase and CTP:phosphocholine cytidylyltransferase were increased. The cholesterol lowering effect was accompanied by a reduction in HMG-CoA reductase activity (80%) and acyl-CoA:cholesterol acyltransferase activity (33%). In hepatocytes treated with methyl 3-thiaoctadeca-6,9,12,15-tetraenoate, fatty acid oxidation was increased 1.8-fold compared to controls. The results suggest that treatment with methyl 3-thiaoctadeca-6,9,12,15-tetraenoate reduces plasma triglycerides by a decrease in the availability of fatty acid substrate for triglyceride biosynthesis via enhanced fatty acid oxidation, most likely attributed to the mitochondrial fatty acid oxidation. It is hypothesized that decreased phosphatidate phosphohydrolase activity may be an additive mechanism which contribute whereby 3-thia fatty acids reduce triglyceride formation in the liver. The cholesterol-lowering effect of the polyunsaturated 3-thia fatty acid ester may be due to changes in cholesterol/cholesterol ester synthesis as 60% of this acid was observed in the hepatic cholesterol ester fraction.  相似文献   

2.
A single oral dose of two 3-thia (3-thiadicarboxylic and tetradecylthioacetic acids) and of 4-thia (tetradecylthiopropionic acid) fatty acids were administered to normolipidemic rats and their effects on lipid metabolism over a 24 hr period were studied. All three thia fatty acids could be detected in plasma 2 hr after treatment. Tetradecylthioacetic and tetradecylthiopropionic acids were detected in different hepatic lipid fractions but were incorporated mainly into hepatic phospholipids. Two hours after administration hepatic mitochondrial beta-oxidation and the total liver level of long-chain fatty acyl-CoA increased with a concomitant decrease in saturated fatty acids, total hepatic malonyl-CoA and plasma triacylglycerol levels in the 3-thia fatty acid groups. Tetradecylthiopropionic acid administration caused a decrease in mitochondrial beta-oxidation and an increase in plasma triacylglycerol at 24 hr. The activities of key lipogenic enzymes were unaffected in all treatment groups. Plasma cholesterol level was reduced only at 8 hr in 3-thiadicarboxylic acid treated rats although 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase was suppressed already at 2, 4, 8 and 12 hr. The results show that thia fatty acids are rapidly absorbed and are systemically available after oral administration but the 3-thia fatty acids reached systemic circulation more slowly and less completely than the 4-thia fatty acid. Very low levels of the thia fatty acids are detected in plasma 24 hr after a single administration. They are incorporated into all hepatic lipid classes, especially phospholipids. Rapid incorporation of a non beta-oxidizable thia fatty acid into hepatic lipids may cause a diversion of other fatty acids from glycerolipid biosynthesis to mitochondrial beta-oxidation. Stimulation of mitochondrial beta-oxidation and suppression of HMG-CoA reductase are primary events, occurring within hours, after 3-thia fatty acid administration. The hypotriglyceridemic effect of the 3-thia fatty acids observed at 2-4 hr is independent of the activities of key lipogenic and triacylglycerol synthesising enzymes.  相似文献   

3.
In Saccharomyces cerevisiae the metabolic degradation of saturated fatty acids is exclusively confined to peroxisomes. In addition to a functional beta-oxidation system, the degradation of unsaturated fatty acids requires auxiliary enzymes, including a Delta2, Delta3-enoyl-CoA isomerase and an NADPH-dependent 2,4-dienoyl-CoA reductase. We found both enzymes to be present in yeast peroxisomes. The impermeability of the peroxisomal membrane for pyrimidine nucleotides led to the question of how the NADPH needed by the reductase is regenerated in the peroxisomal lumen. We report the identification and functional analysis of the IDP3 gene product, which is a yeast peroxisomal NADP-dependent isocitrate dehydrogenase. The newly identified peroxisomal protein is homologous to the mitochondrial Idp1p and cytosolic Idp2p, which both are yeast NADP-dependent isocitrate dehydrogenases. Yeast cells lacking Idp3p grow normally on saturated fatty acids, but growth is impaired on unsaturated fatty acids, indicating that the peroxisomal Idp3p is involved in their metabolic utilization. The data presented are consistent with the assumption that peroxisomes of S. cerevisiae contain the enzyme equipment needed for the degradation of unsaturated fatty acids, including an NADP-dependent isocitrate dehydrogenase, a putative constituent of a peroxisomal NADPH-regenerating redox system.  相似文献   

4.
The Saccharomyces cerevisiae FAT1 gene appears to encode an acyl-CoA synthetase that is involved in the regulation of very long chain (C20-C26) fatty acids. Fat1p, has homology to a rat peroxisomal very long chain fatty acyl-CoA synthetase. Very long chain acyl-CoA synthetase activity is reduced in strains containing a disrupted FAT1 gene and is increased when FAT1 is expressed in insect cells under control of a baculovirus promoter. Fat1p accounts for approximately 90% of the C24-specific acyl-CoA synthetase activity in glucose-grown cells and approximately 66% of the total activity in cells grown under peroxisomal induction conditions. Localization of functional Fat1p:green fluorescent protein gene fusions and subcellular fractionation of C24 acyl-CoA synthetase activities indicate that the majority of Fat1p is located in internal cellular locations. Disruption of the FAT1 gene results in the accumulation of very long chain fatty acids in the sphingolipid and phospholipid fractions. This includes a 10-fold increase in C24 acids and a 6-fold increase in C22 acids. These abnormal accumulations are further increased by perturbation of very long chain fatty acid synthesis. Overexpression of Elo2p, a component of the fatty acid elongation system, in fat1Delta cells causes C20-C26 levels to rise to approximately 20% of the total fatty acids. These data suggest that Fat1p is involved in the maintenance of cellular very long chain fatty acid levels, apparently by facilitating beta-oxidation of excess intermediate length (C20-C24) species. Although fat1Delta cells were reported to grow poorly in oleic acid-supplemented medium when fatty acid synthase activity is inactivated by cerulenin, fatty acid import is not significantly affected in cells containing disrupted alleles of FAT1 and FAS2 (a subunit of fatty acid synthase). These results suggest that the primary cause of the growth-defective phenotype is a failure to metabolize the incorporated fatty acid rather than a defect in fatty acid transport. Certain fatty acyl-CoA synthetase activities, however, do appear to be essential for bulk fatty acid transport in Saccharomyces. Simultaneous disruption of FAA1 and FAA4, which encode long chain (C14-C18) fatty acyl-CoA synthetases, effectively blocks the import of long chain saturated and unsaturated fatty acids.  相似文献   

5.
It was of interest to investigate the influence of both high doses of eicosapentaenoic acid (EPA) and low doses of 2- or 3-methylated EPA on the antioxidant status, as they all cause hypolipidemia, but the dose required is quite different. We fed low doses (250 mg/d/kg body wt) of different EPA derivatives or high doses (1500 mg/d/kg body wt) of EPA and DHA to rats for 5 and 7 d, respectively. The most potent hypolipidemic EPA derivative, 2,2-dimethyl-EPA, did not change the malondialdehyde content in liver or plasma. Plasma vitamin E decreased only after supplementation of those EPA derivatives that caused the greatest increase in the fatty acyl-CoA oxidase activity. Fatty acyl-CoA oxidase activity increased after administration of both EPA and DHA at high doses. High doses of EPA and DHA decreased plasma vitamin E content, whereas only DHA elevated lipid peroxidation. In liver, however, both EPA and DHA increased lipid peroxidation, but the hepatic level of vitamin E was unchanged. The glutathione-requiring enzymes and the glutathione level were unaffected, and no significant changes in the activities of xanthine oxidase and superoxide dismutase were observed in either low- or high-dose experiments. In conclusion, increased peroxisomal beta-oxidation in combination with high amounts of polyunsaturated fatty acids caused elevated lipid peroxidation. At low doses of polyunsaturated fatty acids, lipid peroxidation was unchanged, in spite of increased peroxisomal beta-oxidation, indicating that polyunsaturation is the most important factor for lipid peroxidation.  相似文献   

6.
Peroxisomes have been shown to play an important role in the oxidative degradation of (poly)unsaturated fatty acids, and contain the enzyme activities needed for the metabolism of double bonds of unsaturated fatty acids in connection with this physiological function. Our understanding of the metabolic pathways and enzyme activities involved in the degradation of unsaturated acyl-CoAs has undergone a re-evaluation recently, and though many open questions still remain significant progress has been made, especially concerning the reactions metabolizing double bonds. The enzyme activities to be discussed here are 2,4-dienoyl-CoA reductase; 3/2-enoyl-CoA isomerase; 2-enoyl-CoA hydratase 2; 5-enoyl-CoA reductase and 3,5/2,4-dienoyl-CoA isomerase. Some of these activities are integral parts of the multifunctional proteins of beta-oxidation systems, which must also be taken into account in this context.  相似文献   

7.
The mechanism behind the hypolipidemic effect of tetradecylthioacetic acid (CMTTD, a non-beta-oxidizable 3-thia fatty acid) was studied in hamsters fed a high cholesterol diet (2%), which resulted in hyperlipidemia. Treating hyperlipidemic hamsters with CMTTD resulted in a progressive hypocholesterolemic and hypotriacylglycerolemic effect. Decreased plasma cholesterol was followed by a 39% and 30% reduction in VLDL-cholesterol and LDL-cholesterol, respectively. In contrast, the HDL-cholesterol content was not affected, thus decreasing the VLDL-cholesterol/HDL-cholesterol and LDL-cholesterol/HDL-cholesterol ratios. 3-Hydroxy-3-methylglutaryl- (HMG) CoA reductase activity and its mRNA level were unchanged after CMTTD administration. Also, the LDL receptor and LDL receptor-related protein (LRP-4) mRNAs were unchanged. The decrease in plasma triacylglycerol was accompanied by a 45% and 56% reduction in VLDL-triacylglycerol and LDL-triacylglycerol, respectively. The hypolipidemic effect of CMTTD was followed by a 1.4-fold increase in mitochondrial fatty acid oxidation and a 2.3-fold increase in peroxisomal fatty acid oxidation. CMTTD treatment led to an accumulation of dihomo-gamma-linolenic acid (20:3n-6) in liver, plasma, very low density lipoprotein, and heart. Noteworthy, CMTTD accumulated more in the heart, plasma, and VLDL particles compared to the liver, and in the VLDL particle alpha-linolenic acid (18:3n-3) decreased whereas eicosatetraenoic acid (20:4n-3) increased. In addition, linoleic acid (18:2n-6) and the total amount of polyunsaturated fatty acids decreased, the latter mainly due to a decrease in n-6 fatty acids. The present data show that CMTTD was detected in plasma and incorporated into VLDL, liver, and heart. The relative incorporation (mol%) of CMTTD was heart > VLDL > liver. In conclusion, CMTTD causes both a hypocholesterolemic and hypotriacylglycerolemic effect in hyperlipidemic hamsters.  相似文献   

8.
A range of 4-thiaacyl-CoA derivatives has been synthesized to study the bioactivation of cytotoxic fatty acids by the mitochondrial medium-chain acyl-CoA dehydrogenase and the peroxisomal acyl-CoA oxidase. Both enzymes catalyze alpha-proton abstraction from normal acyl-CoA substrates with elimination of a beta-hydride equivalent to the FAD prosthetic group. In competition with this oxidation reaction, 4-thiaacyl-CoA thioesters undergo dehydrogenase-catalyzed beta-elimination, providing that the corresponding thiolates are sufficiently good leaving groups and can be accommodated by the active site of the enzyme. Thus, the dehydrogenase catalyzes the elimination of 2-mercaptobenzothiazole and 4-nitrothiophenolate from 4-(2-benzothiazole)-4-thiabutanoyl-CoA and 4-(4-nitrophenyl)-4-thiabutanoyl-CoA, respectively. However, the 2,4-dinitrophenyl-analogue appears too bulky and the unsubstituted thiophenyl-derivative is insufficiently activated for significant elimination. Molecular modeling shows that steric interference from the flavin ring dictates a syn rather than an anti elimination. Acryloyl-CoA, the other product of 4-thiaacyl-CoA elimination reactions, is not a significant inactivator of the medium-chain dehydrogenase. In contrast, the irreversible inactivation observed during beta-elimination using 5,6-dichloro-4-thia-5-hexenoyl-CoA (DCTH-CoA), 5,6-dichloro-7,7,7-trifluoro-4-thia-5-heptenoyl-CoA (DCTFTH-CoA), and 6-chloro-5,5,6-trifluoro-4-thiahexanoyl-CoA (CTFTH-CoA) is caused by release of cytotoxic thiolate products within the active site of the dehydrogenase. The double bond between C5 and C6 found in the vinylic analogues DCTH- and DCTFTH-CoA is not essential for enzyme inactivation, although CTFTH-CoA is a weaker inhibitor of the dehydrogenase. Mechanism-based inactivation with CTFTH-CoA requires elimination, is unaffected by exogenous nucleophiles, and is strongly protected by octanoyl-CoA. The peroxisomal acyl-CoA oxidase efficiently oxidizes 4-thiaacyl-CoA analogues, but is only rapidly inactivated by DCTFTH-CoA. The variable ratio of elimination to oxidation observed for DCTH-, DCTFTH-, and CTFTH-CoA may influence the metabolism of the corresponding cytotoxic alkanoic acids in vivo.  相似文献   

9.
EPA, DHA, C15SCH2COOH (n-3), C15SCH2COOH (n-6) and C18SCH2COOH (n-3) are extensively incorporated into phospholipids and triacylglycerol in rat hepatocytes after 24 h incubation with 80 microM fatty acid/derivative. Only traces of polyunsaturated 3-oxa fatty acids (C15OCH2COOH, C18OCH2COOH) were incorporated. C15-S-butyric acid (n-3) is a stronger inhibitor of delta6-desaturase in rat liver-microsomes than C15SCH2COOH (n-3), C15-S-propionic acid (n-3), EPA and DHA. It inhibits delta5-desaturase in a similar manner to EPA and DHA. Arachidonic acid and C15SCH2COOH, (n-6) are better substrates for PGH-synthase than EPA and C15SCH2COOH, (n-3), showing the inhibitory effect of the n-3 bond. The n-3 polyunsaturated fatty acids, including the sulfur-substituted fatty acid derivatives, are poor substrates for PGH-synthase. However, they inactivate the PGH-synthase activity at least as efficiently as arachidonic acid. C15SCH2COOH (n-3), C15S(CH2)2COOH (n-3) and C18SCH2COOH (n-3) induce peroxisomal beta-oxidation more than EPA and DHA.  相似文献   

10.
A rapid and sensitive spectrophotometric assay for free fatty acids using acyl-CoA synthetase and acyl-CoA oxidase is described. It is sensitive to as low as 5 nmol of free fatty acids, and the standard curve is linear up to 100 nmol. The assay consists of the measurement of H2O2 produced from free fatty acids by acyl-CoA synthetase and acyl-CoA oxidase. The quantity of H2O2 is determined by the absorbance at 550 nm in the presence of catalase and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT). This method shows a broad specificity to long-chain fatty acids and the recoveries of added fatty acids (C12-C18) are more than 90%. The presence or absence of serum components or Escherichia coli cell-free extracts has no significant effect on the recovery of added palmitic acid.  相似文献   

11.
A clear chain-length dependent effect was observed for peroxisomal fatty acid beta-oxidation and carnitine acetyltransferase and also for mitochondrial carnitine palmitoyltransferase in primary cultures of rat hepatocytes. The extent of modulation of peroxisomal beta-oxidation was higher with even-carbon numbered dicarboxylic acids than with odd-carbon numbered ones, although such a tendency was not detected in the mitochondrial reactions. These results indicate difference in the effect of fatty acid-derived dicarboxylates on peroxisomal and mitochondrial functions.  相似文献   

12.
13.
The carnitine palmitoyltransferase activity of various subcellular preparations measured with octanoyl-CoA as substrate was markedly increased by bovine serum albumin at low microM concentrations of octanoyl-CoA. However, even a large excess (500 microM) of this acyl-CoA did not inhibit the activity of the mitochondrial outer carnitine palmitoyltransferase, a carnitine palmitoyltransferase isoform that is particularly sensitive to inhibition by low microM concentrations of palmitoyl-CoA. This bovine serum albumin stimulation was independent of the salt activation of the carnitine palmitoyltransferase activity. The effects of acyl-CoA binding protein (ACBP) and the fatty acid binding protein were also examined with palmitoyl-CoA as substrate. The results were in line with the findings of stronger binding of acyl-CoA to ACBP but showed that fatty acid binding protein also binds acyl-CoA esters. Although the effects of these proteins on the outer mitochondrial carnitine palmitoyltransferase activity and its malonyl-CoA inhibition varied with the experimental conditions, they showed that the various carnitine palmitoyltransferase preparations are effectively able to use palmitoyl-CoA bound to ACBP in a near physiological molar ratio of 1:1 as well as that bound to the fatty acid binding protein. It is suggested that the three proteins mentioned above affect the carnitine palmitoyltransferase activities not only by binding of acyl-CoAs, preventing acyl-CoA inhibition, but also by facilitating the removal of the acylcarnitine product from carnitine palmitoyltransferase. These results support the possibility that the acyl-CoA binding ability of acyl-CoA binding protein and of fatty acid binding protein have a role in acyl-CoA metabolism in vivo.  相似文献   

14.
A cDNA clone for pumpkin acyl-CoA oxidase (EC 1.3.3.6; ACOX) was isolated from a lambdagt11 cDNA library constructed from poly(A)+ RNA extracted from etiolated cotyledons. The inserted cDNA clone contains 2313 nucleotides and encodes a polypeptide of 690 amino acids. Analysis of the amino-terminal sequence of the protein indicates that the pumpkin acyl-CoA oxidase protein is synthesized as a larger precursor containing a cleavable amino-terminal presequence of 45 amino acids. This presequence shows high similarity to the typical peroxisomal targeting signal (PTS2). Western blot analysis following cell fractionation in a sucrose gradient revealed that ACOX is localized in glyoxysomes. A partial purification of ACOX from etiolated pumpkin cotyledons indicated that the ACOX cDNA codes for a long chain acyl-CoA oxidase. The amount of ACOX increased and reached to the maximum activity by day 5 of germination but decreased about 4-fold on the following days during the subsequent microbody transition from glyoxysomes to leaf peroxisomes. By contrast, the amount of mRNA was already high at day 1 of germination, increased by about 30% at day 3, and faded completely by day 7. These data indicated that the expression pattern of ACOX was very similar to that of the glyoxysomal enzyme 3-ketoacyl-CoA thiolase, another marker enzyme of the beta-oxidation spiral, during germination and suggested that the expression of each enzyme of beta-oxidation is coordinately regulated.  相似文献   

15.
In mammals including man, peroxisomes play a pivotal role in the breakdown of various carboxylates via beta-oxidation. Physiological substrates include very long chain fatty acids (e.g. lignoceric acid), medium and long chain dicarboxylic acids, certain polyunsaturated fatty acids, 2-methylbranched isoprenoid-derived fatty acids (e.g. pristanic acid), prostanoids (prostaglandins, leukotrienes thromboxanes), and bile acid intermediates (di- and trihydroxycoprostanic acid). Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and man indicate that these carboxylates, in contrast to previous belief, are degraded by separate systems composed of different enzymes. Bile acid intermediates are degraded in hepatic peroxisomes via 2-methylacyl-CoA racemase, trihydroxycoprostanoyl-CoA oxidase (in rat) or branched acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. beta-oxidation of pristanic acid can occur in all tissues and relies on the action of 2-methylacyl-CoA racemase (for the 2R-isomer), pristanoyl-CoA oxidase (in rat) or branched chain acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. The enzymes catalyzing the breakdown of straight chain fatty acids are palmitoyl-CoA oxidase, L-specific multifunctional protein 1 (MFP 1) and the dimeric thiolase. These enzymes are present in all tissues and are identical to those initially characterized in hepatic peroxisomes. Due to the presence of peroxisome targeting signals in all the above mentioned proteins, they are localised in the cytosolic or absent (due to proteolysis) in tissues of patients with a generalized peroxisome deficiency (e.g. Zellweger syndrome). In addition to these lethal inherited disorders that are caused by defects in the biogenesis of peroxisomes, a growing number of patients with peroxisomal beta-oxidation deficiencies have been described. The implications of the presence of separate beta-oxidation systems for the latter disorders is quite profound and calls, in many cases, for a reevaluation of the diagnosis of such patients.  相似文献   

16.
In the yeast Saccharomyces cerevisiae, fatty acid beta-oxidation is restricted to peroxisomes. Previous studies have shown two possible routes by which fatty acids enter the peroxisome. The first route involves transport of medium-chain fatty acids across the peroxisomal membrane as free fatty acids, followed by activation within the peroxisome by Faa2p, an acyl-CoA synthetase. The second route involves transport of long-chain fatty acids. Long-chain fatty acids enter the peroxisome via a route that involves activation in the extraperoxisomal space, followed by transport across the peroxisomal membrane. It has been suggested that this transport is dependent upon the peroxisomal ATP-binding-cassette transporters Pxa1p and Pxa2p. In this paper we investigated whether Pxa2p is directly responsible for the transport of C18:1-CoA, a long-chain acyl-CoA ester. Using protoplasts in which the plasma membrane has been selectively permeabilised by digitonin, we show that C18:1-CoA, but not C8:0-CoA, enters the peroxisome via Pxa2p, in an ATP-dependent fashion. The results obtained may contribute to the elucidation of the primary defect in the human disease X-linked adrenoleukodystrophy.  相似文献   

17.
The ACO3 gene, which encodes one of the acyl-CoA oxidase isoenzymes, was isolated from the alkane-utilizing yeast Yarrowia lipolytica as a 10 kb genomic fragment. It was sequenced and found to encode a 701-amino acid protein very similar to other ACOs, 67.5% identical to Y. lipolytica Aco1p and about 40% identical to S. cerevisiae Pox1p. Haploid strains with a disrupted allele were able to grow on fatty acids. The levels of acyl-CoA oxidase activity in the ACO3 deleted strain, in an ACO1 deleted strain and in the wild-type strain, suggested that ACO3 encodes a short chain acyl-CoA oxidase isoenzyme. This narrow substrate spectrum was confirmed by expression of Aco3p in E. coli.  相似文献   

18.
1. Microsomal P450 and peroxisomal fatty acid oxidation activities were studied in liver of rats after long-term ethanol consumption. 2. Ethanol increased the microsomal lauric acid omega-hydroxylation and the aminopyrine N-demethylation catalyzed by cytochrome P450. 3. Ethanol increased peroxisomal beta-oxidation of palmitoyl CoA and catalase activity in liver. 4. Both microsomal and peroxisomal activities behaved in a coordinate way in the liver of rats with long-term ethanol consumption. 5. These results would support a role of microsomal omega-hydroxylation and peroxisomal beta-oxidation of fatty acids in an extramitochondrial pathway of lipid oxidation in the liver.  相似文献   

19.
The biochemical and immunocytochemical properties of peroxisomal and mitochondrial beta-oxidation enzymes in bovine adrenal chromaffin cells were investigated. Peroxisomes were detectable by immunofluorescence staining using antibodies against acyl-CoA oxidase, peroxisomal 3-ketoacyl-CoA thiolase and catalase. The mitochondria were abundantly stained with antibody against mitochondrial 3-ketoacyl-CoA thiolase. The biosynthesis and intracellular processing of acyl-CoA oxidase and the peroxisomal 3-ketoacyl-CoA thiolase was slower than that in fibroblasts. The peroxisomal beta-oxidation activities shown by [1-14C] lignoceric acid oxidation were slightly lower than those in fibroblasts, whereas the mitochondrial beta-oxidation activities shown by [1-14C] palmitic acid oxidation were almost identical to those in fibroblasts. Adrenal chromaffin cells are useful materials for investigating the peroxisomal and mitochondrial metabolism of autonomic neurons and may contribute to the clarification of neuronal dysfunction in peroxisomal and mitochondrial disorders.  相似文献   

20.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号