首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In high strength low alloy (HSLA) steels typically used in reactor pressure vessels (RPV), irradiation-induced microstructure changes affect the performance of the components. One such change is precipitation hardening due to the formation of solute clusters and/or precipitates which form as a result of irradiation-enhanced solute diffusion and thermodynamic stability changes. The other is irradiation-enhanced tempering which is a result of carbide coarsening due to irradiation-enhanced carbon diffusion. Both effects have been studied using a recently developed Monte Carlo based precipitation kinetics simulation technique and modelling results are compared with experimental measurements. Good agreements have been achieved.  相似文献   

2.
Hydrogen and helium ion beams delivering different doses are used in the ion implantation, at room temperature, of China Low Activation Martensitic (CLAM) steel and the induced defects studied by Doppler broadening of gamma-rays generated in positron annihilation. Defect profiles are analysed in terms of conventional S and W parameters, measures of relative contributions of low and high-momentum electrons in the annihilation peak, as functions of incident positron energies E up to 30 keV. The behaviours of the S-E, W-E and S-W plots under different implantation doses indicate clearly that the induced defect size has obvious variation with depth, taking values that interpolate between surface and bulk values, and depend mainly on helium ion fluences. The S-W plot indicates that two types of defects have formed after ion implantation.  相似文献   

3.
To be used in a fusion reactor, structural materials, and in particular steels, has to be selected and optimised in their composition to achieve a reduction in the long-term radioactive waste. A reduction in the long-term radioactive inventory could be reached substituting elements like molybdenum, niobium and nickel with other ones like tantalum and tungsten which have the same functions as alloying elements and, if irradiated, do not produce long lived radioisotopes. The martensitic steel belonging to the family of 8-9% Cr Eurofer 97 is considered the reference structural steel for fusion application. However, only few information are available about its mechanical properties in the liquid eutectic alloy Pb-16%Li. Particularly, the problem of liquid metal embrittlement (LME) has not been studied in detail and the effect of neutron irradiation on LME has not been investigated at all so far. This work presents the results obtained irradiating tensile specimens of Eurofer 97 up to 5.9 dpa in lead lithium. Tensile tests of samples have been performed out of pile in the same alloy at the same temperature at which irradiation was carried out.  相似文献   

4.
Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.  相似文献   

5.
Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 1022/m2 increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 °C by a factor of ∼2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 °C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.  相似文献   

6.
A non-conventional X-ray source which is based on the production of electron channeling radiation in a diamond crystal has been installed at the radiation source ELBE. The brilliant electron beam with an average current of up to 200 μA allows to reach photon rates of quasi-monochromatic channeling radiation between 1010 s−1 and 1011 s−1 per 10% bandwidth. The photon energy can be tuned by variation of the beam energy. On-line X-ray monitoring was realised at high beam currents using a Compton spectrometer. Monochromisation of channeling radiation and bremsstrahlung background reduction has been investigated applying X-ray diffraction at a highly ordered pyrolytic graphite crystal.  相似文献   

7.
The behaviour of vacancy like implantation-induced defects created in the track region of 800 keV 3He ions in polycrystalline tungsten was studied by Doppler broadening spectroscopy as a function of annealing temperature. A slow positron beam, coupled with a Doppler broadening spectrometer, was used to measure the low- and high-momentum annihilation fractions, S and W, respectively, as a function of positron energy in tungsten samples implanted at different fluences from 1014 to 5 × 1016 cm−2. The behaviour of the S(E), W(E) and S(W) plots with the annealing temperature clearly indicates that the irradiation-induced vacancy like defects begin to evolve between 523 and 573 K, whatever the implantation fluence. This first temperature stage evolution corresponds to the migration of the monovacancies created during implantation to form larger vacancy like defects of which depth profile is different from the initial radiation-induced defects one.  相似文献   

8.
We have investigated the response of radiochromic films (MD-55 and HD-810) exposed to protons of 0.6 MeV. Each film is bombarded with a proton beam in an angular geometry, in such a way that the absorbed dose is related to angle. Depending on the energy and the angular fluence, the irradiated volume is total or partial. We compare the dose of these irradiated films with fully irradiated films exposed to γ radiation from a 60Co calibrated source.  相似文献   

9.
Low temperature silicon dioxide layers (LTO), deposited on crystalline silicon substrates, and thermally densified at 750 °C for 90 min or 900 °C for 30 min, jointly with thermally grown silicon dioxide layers, were irradiated with low fluence 11 MeV Ti ions. A selective chemical etch of the latent tracks generated by the passage of swift ions was performed by wet or vapour HF solution. The wet process produced conically shaped holes, while the vapour procedure generated almost cylindrical nanopores. In both cases thermal SiO2 showed a lower track etching velocity Vt, but with increasing the densification temperature of the LTO samples, the Vt differences reduced. LTO proved to be suitable for wet and vapour ion track formation, and, as expected, for higher densification temperatures, its etching behaviour approached that of thermal silicon dioxide.  相似文献   

10.
The theory of radiation damage in metallic materials predicts that under cascade-irradiation conditions the voids should approach a steady state, which is characterised by a maximum mean void size. It is shown in this paper that the steady-state concentrations of voids of different size are described by the Gaussian distribution with the maximum size mentioned above to be the most probable value. The evolution of voids towards the steady state is analysed.  相似文献   

11.
The temperature dependence of the irradiation effects on polysulfone was studies by measuring the molecular weight, glass transition temperature, gel fraction and evolved gas. Polysulfone was irradiated with gamma-rays at room temperature, 100, 150, 180 and 210 °C. The change of molecular weight distribution and glass transition temperature showed occurrences of a main chain scission at room temperature and cross-linking at high temperature. The decrease of gel dose, the increases of gel fraction and total gas evolution with increasing temperature was observed. The evolution of CO, CO2 and SO2 gases increased at high temperature, while yield of evolved H2 was independent of irradiation temperature. The probability of the cross-linking was clearly increased by irradiation at high temperature above 180 °C, though the chain scission was not changed very much.  相似文献   

12.
Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO4 and La0.73Ce0.27PO4. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.  相似文献   

13.
For the first time, chemical analyses using Atom Probe Tomography were performed on a bolt made of cold worked 316 austenitic stainless steel, extracted from the internal structures of a pressurized water reactor after 17 years of reactor service. The irradiation temperature of these samples was 633 K and the irradiation dose was estimated to 12 dpa (7.81 × 1025 neutrons.m−2, E > 1 MeV). The samples were analysed with a laser assisted tomographic atom probe. These analyses have shown that neutron irradiation has a strong effect on the intragranular distribution of solute atoms. A high number density (6 × 1023 m−3) of Ni-Si enriched and Cr-Fe depleted clusters was detected after irradiation. Mo and P segregations at the interfaces of these clusters were also observed. Finally, Si enriched atmospheres were seen.  相似文献   

14.
Thanks to their refractoriness, carbides are sensed as fuel coating for the IVth generation of reactors. Among those studied, the Ti3SiC2 ternary compound can be distinguished for its noteworthy mechanical properties: the nanolamellar structure imparts to this material some softness as well as better toughness than other classical carbides such as SiC or TiC. However, under irradiation, its behaviour is still unknown. In order to understand this behaviour, specimens were irradiated with heavy ions of different energies, then characterised. The choice of energies used allowed separation of the effects of nuclear interactions from those of electronic ones.  相似文献   

15.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

16.
Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems.X- and Y-cut LiNbO3 crystals implanted with 8 MeV Au3+ ions with a fluence of 1 × 1017 ions/cm2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold.Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of and aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed.The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 1017 ions/cm2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering.Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 1015 to 250 × 1015 ions/cm−2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show evidence of a strained lattice after the proton bombardment and recovery after long period storage. The effects are attributed to the annealing of the defects produced.  相似文献   

17.
Ion irradiation damage experiments were performed at ∼80 K on polycrystalline samples of monoclinic, slightly sub-stoichiometric zirconia (ZrO1.98). Following irradiation with 150 keV Ne+ ions, the monoclinic phase was gradually replaced by a new phase. Transmission electron microscopy (TEM) observations in cross-sectional geometry and electron microdiffraction (μD) measurements revealed that the irradiated layer in a sample irradiated to a fluence of 5 × 1020 Ne/m2 is partially transformed to a higher symmetry phase of high crystallinity. This phase transformation is accompanied by reduction of the initial micron-sized, highly-twinned grain distribution, to a nano-phased grain structure. Grazing incidence X-ray diffraction (GIXRD) measurements revealed that the radiation-induced phase is a tetragonal polymorph of zirconia. This was verified by the existence of strong (1 0 1) diffraction maxima and weak (1 0 2) reflections (body-centered cell). Raman spectroscopy (RS) measurements were also performed in an attempt to corroborate GIXRD results obtained from the irradiated material. RS measurements in the confocal geometry agreed with GIXRD measurements, although RS was not as definitive as GIXRD. In addition to RS showing the existence of a band corresponding to a tetragonal structure at 262 cm−1, a new mystery band appeared at 702 cm−1 that increased in intensity as a function of irradiation fluence.  相似文献   

18.
A systematic study of Ni based ohmic and Schottky contacts (SCs) onto the n-4H-SiC and n-6H-SiC under relatively low-dose (1 × 1012 e cm−2) and high-energy (6, 12, 15 MeV) electron irradiation (HEEI) has been introduced. Lower specific contact resistivity has been reached for Ni based ohmic contact structures on both 4H and 6H-SiC after each electron irradiation. This finding has been explained by the displacement damage produced by the collision of electrons with atoms of Ni contact material. It has been observed that the HEEI caused to increase in the ideality factors of both SCs indicating deviation from thermionic emission theory in current transport mechanism. While the Schottky barrier height (SBH) for Ni/4H-SiC SC remains nearly constant, an increase has been observed for the Ni/6H-SiC SC. Donor concentrations for both diodes have decreased with increasing electron energy probably due to the trapping effect of the irradiation induced defect(s).  相似文献   

19.
The trapping effect of self-interstitial atom (SIA) clusters in neuron-irradiated Fe was analyzed in terms of generic traps. The effect of the cut-off size between sessile and glissile SIA clusters was investigated. The accumulation of SIA clusters decreased drastically as the cut-off size increased, which originated from the elimination of the SIA clusters at a grain boundary through its one-dimensional motion. When the immobile generic traps were introduced to the kinetic Monte Carlo simulation model, the effect of trap parameters was assessed. An increase in the binding energy between the trap and SIA-species resulted in a decrease in the number of mono-SIAs that were dissociated from the trap and a corresponding delay in visible SIA clusters. The size-dependent prefactor for the dissociation rate of trapped SIA clusters was necessary for a realistic accumulation behavior of SIA clusters. The trap density affects the density and size of the accumulated SIA cluster density during irradiation. This parameterization of generic traps provided insight into the mechanism of accumulation of SIA and SIA cluster.  相似文献   

20.
In plutonium compounds, the lattice parameter increases due to self-radiation damage by α-decay of plutonium isotopes. The lattice parameter change and its thermal recovery in plutonium and uranium mixed dioxide (MOX) were studied. The lattice parameter for samples of MOX powders and pellets that had been left in the air for up to 32 years was measured. The lattice parameter increased and was saturated at about 0.29%. The change in lattice parameter was formulated as a function of self-radiation dose. Three stages in the thermal recovery of the damage were observed in temperature ranges of below 673 K, 673-1073 K and above 1073 K. The activation energies in each recovery stage were estimated to be 0.12, 0.73 and 1.2 eV, respectively, and the corresponding mechanism for each stage was considered to be the recovery of the anion Frenkel defect, the cation Frenkel defect and a defect connected with helium, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号