首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured the fraction of the ions transmitted through nanocapillaries with their initial charge state for 200 keV Xe7+ ions impact on a polycarbonate (PC) foil with a thickness of 30 μm and a diameter of 150 nm. An Au film was evaporated on both the front and back side. It is found that more than 97% of the transmitted ions remain in their initial charge state. Then, the transmitted ion fraction and the characteristic tilt angle of 40 keV Xe7+ ions through this foil and another one with the same thickness and diameter, but evaporated by Au only on the front side, were measured. By comparing the results of these two foils, the influence of the ions deposited in the capillary exit region on the transmitted ion fraction and the characteristic tilt angle is studied. In comparison with the foil evaporated by Au on both sides, the maximum transmitted ion fraction of the foil evaporated by Au on the front side only is nearly 4 times smaller. Also, the characteristic tilt angle is slightly decreased. These results are discussed within the models for the guiding effect.  相似文献   

2.
We have calculated charge fractions and angular distributions of scattered He atoms resulting from the interaction of keV He+ beams at grazing incidences with an Al(1 1 1) surface. Several improvements over our earlier approaches have been incorporated. These are a more sophisticated RPA image potential for the ion-metal interaction as well as kinematic factors affecting the static rates for the Auger transfer mechanisms. For interaction cases in which both perpendicular and parallel velocities are low, we obtain angular distributions which have a better agreement with the experimental data than our earlier version of the theory, although still the theoretical results do not reach total neutralization of the beam as the experimental results show.  相似文献   

3.
The total secondary electron emission yields, γT, induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, γT increases with the charge of projectile ion. By plotting γT as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.  相似文献   

4.
本文在经典过垒模型(COBM)下,通过计算机模拟研究了低速高电荷态离子Xeq 在金属Al(111)表面掠角散射过程中,高电荷态Xeq 离子的中性化过程、其电荷态与该高电荷态离子到Al(111)表面的距离R的关系.此外,还计算了不同电荷态的Xeq 离子在掠射过程中所获得的镜像能,并把该结果与实验值进行了比较.我们模拟的镜像能与实验值符合得非常好.  相似文献   

5.
We investigated the effects of size and energy of large incident Ar cluster ions on the secondary ion emission of Si. The secondary ions were measured using a double deflection method and a time-of-flight (TOF) technique. The size of the incident Ar cluster ions was between a few hundreds and several tens of thousands of atoms, and the energy up to 60 keV. Under the incidence of keV energy atomic Ar ions, mainly atomic Si ions were detected, whereas Si cluster ions were rarely observed. On the other hand, under the incidence of large Ar cluster ions, the dominant secondary ions were  (2 ? n ? 11). It has become clear that the yield ratio of secondary Si cluster ions was determined by the velocity of the incident cluster ions, and this strong dependence of the yield ratio on incident velocity should be related to the mechanisms of secondary ion emission under large Ar cluster ion bombardment.  相似文献   

6.
The paper addresses CuPt alloy sputtering by Ar ions and discusses the well-known experiment performed by Andersen et al. 25 years ago, but not yet properly explained. The atomistic (binary-encounter) simulation has been applied to extract the concentrations of surface Cu and Pt atoms from the experimental data. The results of simulations favor segregation of Cu at all bombarding energies studied experimentally (1.25-320 keV). It has been shown that some mysterious results of the experiment can be explained by a reconstruction of the surface undergoing sputtering. For forecasting purposes, the sputtering of CuPt alloy with 0.25-1 keV Ar ions is also considered.  相似文献   

7.
A direct Monte Carlo program has been developed to calculate the backward (γb) and forward (γf) electron emission yields from 20 nm thick Al foil for impact of C+, Al+, Ar+, Cu+ and Kr+ ions having energies in the range of 0.1-10 keV/amu. The program incorporates the excitation of target electrons by projectile ions, recoiling target atoms and fast primary electrons. The program can be used to calculate the electron yields, distribution of electron excitation points in the target and other physical parameters of the emitted electrons. The calculated backward electron emission yield and the Meckbach factor R = γf/γb are compared with the available experimental data, and a good agreement is found. In addition, the effect of projectile energy and mass on the longitudinal and lateral distribution of the excitation points of the electrons emitted from front and back of Al target has been investigated.  相似文献   

8.
The present paper deals with the emission of atomic and molecular ions from elemental molybdenum surface under Cs+ bombardment to explore the MCs+ formation mechanism with changing Cs surface coverage. Integrated count of MoCs+ shows a monotonic increase with increasing primary ion energy (1-5 keV). Change in MoCs+ intensity is attributed to the variation of surface work function ? and cesium surface concentration cCs due to varying impact energies. Variation of cCs has been obtained from the expression, cCs ∝ 1/(1 + Y) where Y is the elemental sputtering yield estimated from TRIM calculations. Systematic study of the energy distributions of all species emerging from Mo target has been done to measure the changes in surface work function. Changing slopes of the leading parts of Cs+ energy distributions suggest a substantial depletion in surface work function ? with decreasing primary ion energies. Δ? shows a linear dependence on cCs. The maximum reduction in surface work function Δ?max = 0.69 eV corresponds to the highest value of cCs = 0.5. A phenomenological model, based on the linear dependence of ? on cCs, has been employed to explain the MoCs+ data.  相似文献   

9.
A spectral structure of the radiation (190-590 nm) emitted during sputtering of polycrystalline Cu, Be and CuBe targets by Kr+ ions with 5 keV have been presented. Evolution of surface composition during ion beam sputtering is investigated. Several time scales are distinguished, corresponding to different processes: the elimination of surface contaminants, the removal of the corroded layer. The implications for the use of ion beam optical spectroscopy in surface analysis are discussed. In the case of Be and Cu98 Be2, a molecular structure appears between 492 nm and 502 nm. It is similar for both samples and is ascribed to de-excitation of BeH.  相似文献   

10.
Tungsten has recently been introduced as a new wall material for fusion, because it exhibits favourably low sputtering yields and a very low tritium retention as compared to the commonly used graphite wall and divertor tiles. We measure total electron emission yields due to impact of slow singly and multiply charged ions (deuterium, helium and carbon) on sputter-cleaned polycrystalline tungsten surfaces by using a current method in combination with a retarding grid. Results are presented in the eV to keV impact energy region as typical for fusion edge plasma conditions and discussed in terms of potential and kinetic electron emission.  相似文献   

11.
The survival of ions during grazing scattering of keV He+ ions from a clean Ni(1 1 0) surface is studied as function of target temperature. We observe ion fractions in the scattered beams of typically 10−3 which show a slight increase with temperature of the target surface. From computer simulations of projectile trajectories we attribute this enhancement for ion fractions to effects of thermal vibrations of lattice atoms on the survival of ions in their initial charge state. Based on concepts of Auger neutralization, we discuss the role of the spin polarization of target electrons on charge transfer. We do not find corresponding signatures in our data and conclude that in the present case of Ni(1 1 0) the spin polarization has to be small.  相似文献   

12.
For scattering of fast atoms from metal and insulator surfaces under axial channeling conditions pronounced peaks in the angular distributions of scattered projectiles are interpreted in terms of rainbow scattering. The angular position of such “rainbow peaks” are closely related to the interaction potential and its corrugation in the topmost surface region. We have scattered N and O atoms, with energies ranging from 10 to 70 keV, from clean and flat Al(0 0 1) and LiF(0 0 1) surfaces along low index axial directions in the surface plane and studied the positions of the rainbow peaks as function of the kinetic energy of the atomic projectiles normal to the surface. For the insulator surface the rainbow angle does not depend on projectile energy for constant normal energy, whereas for the metal surface we find pronounced dynamic effects. We interpret this different behaviour as arising from a projectile energy dependent contribution to the underlying interaction potentials owing to embedding the projectiles into the free electron gas in the selvedge of the surfaces, which is present for the metals but absent for insulators.  相似文献   

13.
A thin germanium crystal has been irradiated at GANIL by Pb beams of 29 MeV/A (charge state Qin = 56 and 72) and of 5.6 MeV/A (Qin = 28). The induced ion emission from the sample entrance surface was studied, impact per impact, as a function of Qin, velocity vin and energy loss ΔE in the crystal. The Pb ions transmitted through the crystal were analyzed in charge (Qout) and energy using the SPEG spectrometer. The emitted ionized species were detected and analyzed in mass by a time-Of-flight multianode detector (LAG). Channeling was used to select peculiar ΔE values in Ge and hence peculiar Pb ion trajectories close to the emitting entrance surface. The experiment was performed in standard vacuum. No Ge emission was found. The dominating emitted species are H+ and hydrocarbon ions originating from the contamination layer on top of the crystal. The mean value 〈M〉 of the number of detected species per incoming Pb ion (multiplicity) varies as (Qin/vin)p, with p values in agreement with previous results. We have clearly observed an influence of the energy deposition ΔE in Ge on the emission from the top contamination layer. When selecting increasing values of ΔE, we observed a rather slow increase of 〈M〉. On the contrary, the probabilities of high multiplicity values, which are essentially connected to fragmentation after emission, strongly increase with ΔE.  相似文献   

14.
Using molecular-dynamics simulation, we study the sputtering of a Pt(1 1 1) surface under oblique and glancing incidence 5 keV Ar ions. For incidence angles larger than a critical angle ?c, the projectile is reflected off the surface and the sputter yield is zero. We discuss the azimuth dependence of the critical angle ?c with the help of the surface corrugation felt by the impinging ion. If a step exists on the surface, sputtering occurs also for glancing incidence ?>?c. We demonstrate that for realistic step densities, the total sputtering of a stepped surface may be sizable even at glancing incidence.  相似文献   

15.
Surface morphology has a strong influence on sputtering and implantation. A newly developed Monte-Carlo code SDTrimSP-2D simulates ion bombardment of surfaces with a 2D surface morphology (1D is depth and another dimension is lateral) defined by a vertical cross-section of the solid. The simulations allow to study numerically the interdependency of surface geometry and sputtering and implantation processes. Experimental results of the bombardment of W layers deposited on polished pyrolytic graphite with 6 keV C ions were used for comparison with results of the simulation. Free parameters of the code, particularly the so-called anisotropy coefficient, are calibrated by comparison of the macroscopic evolution of the elemental surface composition to the experimental results. After calibration, the code reproduces qualitatively the evolution of the shape of nano-scale surface structures observed by atomic force microscopy and by scanning electron microscopy. The histograms of the surface heights obtained by measurements and by the simulation show qualitative agreement. Local values of the W sputtering yield and C areal density, which are accessible only from the simulations, have been found to be strongly dependent on the nano-scale geometry.  相似文献   

16.
17.
Previous simulations of glancing incidence ion-surface interaction have demonstrated that classical dynamics using the row-model have successfully reproduced multimodal azimuthal and polar spectra. These studies have also shown considerable sensitivity to the form of the interatomic potential thus making it a strong test of the validity of such potentials and even allow deduction of the ion-surface potentials. In these simulations the individual pairwise interactions between the projectile and the target atoms have been replaced by cylindrical potentials.Comparison to numerous experimental studies have confirmed the existence of rainbow scattering phenomena and successfully tested the validity of the cylindrical potential used in these simulations. The use of cylindrical potentials avoids stochastic effects due to thermal displacements and allows faster computer simulations leading to reliable angular distributions.In the present work we extend the row-model to consider scattering from binary alloys. Using He+ scattered at glancing incidence from NiAl surfaces, Al or Ni terminated, a faster method has been developed to easily and accurately quantize not only the maximum deflection azimuthal angle but all the singular points in the angular distribution. It has been shown that the influence of the surface termination on the rainbow angle and the inelastic losses is small.  相似文献   

18.
The sputtering yield induced by keV hydrogen ions measured at CERN and at Risø National Laboratory for solid H2 and D2 at temperatures below 4.2 K decreases with increasing film thickness from about 100 × 1015 molecules/cm2. For a film thickness comparable to or larger than the ion range the data from Risø show a slight increase, whereas the yield from CERN continues to decrease up to very large film thicknesses, i.e. one order of magnitude larger than the ion range. The different behavior of the yield is discussed in terms of the probable growth modes of the films. The films produced at the Risø setup are quench-condensed films, while those produced at CERN are supposed to grow with large hydrogen aggregates on top of a thin bottom layer.  相似文献   

19.
Au nanoislet targets ( 2-60 nm) were bombarded by 200 keV polyatomic ions (40 keV/atom), which deposit their energy mainly in the nuclear stopping mode: ∑(dE/dx)n = 30 keV/nm and ∑(dE/dx)e = 2 keV/nm. The matter desorbed in the form of nanoclusters was registered by TEM. The total transfer of matter was determined by neutron-activation analysis. The total yield of the ejected gold reached high values of up to 2.6 × 104 atoms per Au5 ion. The major part (2 × 104 atoms per ion Au5) of the emission is in the form of nanoclusters. The results are compared with the data of similar experiments with 1 MeV Au5 (200 keV/atom) and other projectiles. The analysis of the experimental data and the comparison to molecular-dynamics simulation results of the desorption process show that the desorption of Au nanoislets is induced by their melting, build-up of pressure and thermal expansion.  相似文献   

20.
Highly charged ions (HCI) approaching, touching or penetrating dielectric surfaces extract many electrons of the solid leading to the formation of permanent surface modifications. The ions which capture the electrons in their outermost shells form hollow atoms which emit X-rays during their decay to the ground state. In this paper one presents experiments showing that these X-rays) allow diagnosing the electric nature of the surfaces. HCI while modifying the structure of surfaces may then also be used to diagnose these changes on line or off line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号