首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low temperature silicon dioxide layers (LTO), deposited on crystalline silicon substrates, and thermally densified at 750 °C for 90 min or 900 °C for 30 min, jointly with thermally grown silicon dioxide layers, were irradiated with low fluence 11 MeV Ti ions. A selective chemical etch of the latent tracks generated by the passage of swift ions was performed by wet or vapour HF solution. The wet process produced conically shaped holes, while the vapour procedure generated almost cylindrical nanopores. In both cases thermal SiO2 showed a lower track etching velocity Vt, but with increasing the densification temperature of the LTO samples, the Vt differences reduced. LTO proved to be suitable for wet and vapour ion track formation, and, as expected, for higher densification temperatures, its etching behaviour approached that of thermal silicon dioxide.  相似文献   

2.
The influence of the alkali resistant surfactant Dowfax 2A1 on single ion track etching in 30 μm polycarbonate foils is studied at low etch rate (5 M NaOH at 41.5 ± 2 °C) using electro conductivity measurements. At surfactant concentrations above 10−4 vol.% break-through times are predictable (Δt/t < 0.25). At high surfactant concentrations (?0.1 vol.%) the formation of cylindrical channels is favoured. The shape of these channels (length ? 26 μm, diameter ? 1.8 μm) is verified by electro-replication and SEM observation of the resulting wires. Agreement of radii is better than 0.1 μm. Depending on the current limit set during electro replication compact or hollow cylinders can be obtained. A technique for localizing and manipulating individual micro wires by their head buds is described.  相似文献   

3.
Changes in the diameters and depths of pores were studied in the process of etching polyethyleneterephthalate (PET) films irradiated by Ar ions having an energy of 1 MeV/n. Information about the pore diameters and lengths was obtained with JSM-840 and TEM-125 electron microscopes. The solutions of NaOH (0.5 mol/dm3 and 2 mol/dm3) were used as etchants. Etching was performed at 55 °C and 70 °C. Two methods of sensitization were used: the first one by UV illumination and treatment in dimethylformamide (DMF), the second method just by UV illumination. It was found that the diameters and the depths of pores are larger in films treated according to the first sensitization method. Etching duration (breakthrough time), which leads to through-going pores of the minimal radius, was established. After sensitization according to the first method the track etch rate grows quicker than the transverse etch rate. This gives a possibility to obtain through pores with diameters ranging from 50 nm to several micrometers.  相似文献   

4.
In this paper, the sensitization of aged Incoloy 800 alloy to intergranular corrosion has been systemically investigated by double loop electrochemical potentiokinetic reactivation (DL-EPR) technique in combination with oxalic acid etching test and microstructure observation. The DL-EPR results show that the specimens aged at 650 °C and 700 °C for 4 h were intensely sensitized with Ir:Ia value greater than 30% while there was no sensitization phenomenon for the specimens aged at 800 °C for 4 h. It was also found that the degree of sensitization increased gradually with the aging time in the range of 0-10 h at 650 °C, and Ir:Ia value reached the maximum −46% after an aging time of 10 h. However, further increasing aging time decreased the sensitization due to the healing effect incurred by the diffusion of chromium from adjacent grains to chromium-depleted zones. Comparison between two evaluating techniques (the DL-EPR and oxalic acid etching test) has also been conducted.  相似文献   

5.
Polymeric matrix composite (PMC) has been used in engineering applications instead of metal in the last few years, due to its corrosion resistance and excellent relation between tensile strength/density and elastic modulus/density. However, PMC materials cured by thermal process require high temperature and are time-consuming. The electron beam (EB) curing technology allows its use at room temperature and reduced curing times, and this is one of the main advantages over thermal technology. The aim of this work is to investigate electron beam curable epoxy formulations to use in filament winding processes to produce composite material with similar or better properties than thermal curable composites. The study has been made with commercial epoxy resins and cationic initiators. The epoxy resin samples were irradiated for few minutes with total dose of 150 kGy. The glass transition temperatures (Tg) were determined by dynamic mechanical analyzer (DMA) and the result was 137 °C. The thermal process was carried out in a furnace following three steps: 4 h at 90 °C, increasing temperature from 90 °C to 130 °C during 4 h and 12 h at 130 °C. The total process time was 20 h. The Tg of this sample was 102 °C.  相似文献   

6.
The excellent tensile and creep strength and the potential for managing radiation damage make nano-structured ferritic alloys (NFAs) promising candidates for high-temperature applications in spallation proton, advanced fission and fusion neutron environments. The thermal stability of NFAs is critical for such applications, hence, this has been investigated in a series of aging experiments on MA957 at 900 °C, 950 °C and 1000 °C for times up to 3000 h. Optical and transmission electron microscopy (TEM) studies showed the fine scale grain and dislocation structures are stable up to 1000 °C. TEM and small angle neutron scattering (SANS) showed that the nm-scale solute cluster-oxide features (NFs), that are a primary source of the high strength of NFAs, were stable at 900 °C and coarsened only slightly at 950 °C and 1000 °C. Porosity that developed during high-temperature aging was minimal at 900 °C and modest at 950 °C, but was much larger after 1000 °C. Microhardness was basically unchanged after the 900 °C aging, and decreased only slightly (?3%) after aging at 950 °C and 1000 °C.  相似文献   

7.
A challenging task in the application of solid-state nuclear track detectors (SSNTDs) is the measurement of depths of the tracks. One approach involves breaking and polishing the side of SSNTDs to reveal the cross-sections of the tracks for direct measurements. Recently, surface profilometry was used to measure the heights of the replicas of alpha-particle tracks to give the track depths. In the present work, systematic comparisons among the track depths for alpha-particles with normal incidence and different incident energies were made for these two methods. After irradiation, the detectors were etched in a 6.25 N aqueous solution of NaOH at 70 °C. Both long etching time of 15 h (to produce spherical-phase tracks) and short etching time from 1 to 8 h (to produce sharp-phase tracks) were used. Good agreement was achieved between the two methods for spherical-phase tracks but not for sharp-phase tracks. It has been found that the surface profilometry method only works for replicas for spherical-phase tracks. Replicas for sharp-phase tracks are easier to collapse or deform, so the surface profilometry method may not give correct results.  相似文献   

8.
Effect of heat treatment on silver selenide films grown from diffusion-reaction of Ag and Se films on Cr-buffered Si substrates was investigated up to 400 °C. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the films. XRD patterns of the films showed stress assisted change in preferential orientation of the films upon annealing: the films annealed at 200 °C exhibited a strong orientation along (2 0 0) plane, which changed to (0 1 3) after annealing at 300 and 400 °C. Dynamic SIMS measurements showed that Cr is confined to the interface and that there is no diffusion of Cr into silver selenide.  相似文献   

9.
Fracture behavior of cold-worked 316 stainless steels irradiated up to 73 dpa in a pressurized water reactor was investigated by impact testing at −196, 30 and 150 °C, and by conventional tensile and slow tensile testing at 30 and 320 °C. In impact tests, brittle IG mode was dominant at −196 °C at doses higher than 11 dpa accompanying significant decrease in absorbed energy. The mixed IG mode, which was characterized by isolated grain facets in ductile dimples, appeared at 30 and 150 °C whereas the fracture occurred macroscopically in a ductile manner. The sensitivity to IG or mixed IG mode was more pronounced for higher dose and lower test temperature. In uniaxial tensile tests, IG mode at a slow strain rate appeared only at 320 °C whereas mixed IG mode appeared at both 30 and 320 °C at a fast strain rate. A compilation of the results and literature data suggested that IG fracture exists in two different conditions, low-temperature high-strain-rate (LTHR) and high-temperature low-strain-rate (HTLR) conditions. These two conditions for IG fracture likely correspond to two different deformation modes, twining and channeling.  相似文献   

10.
At room temperature, single-crystal silicon was implanted with Cu+ ions at an energy of 80 keV using two doses of 5 × 1015 and 1 × 1017 Cu+ cm−2. The samples were heat treated by conventional thermal annealing at different temperatures: 200 °C, 230 °C, 350 °C, 450 °C and 500 °C. The interdiffusion and solid-state reactions between the as-implanted samples and the as-annealed samples were investigated by means of Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD). After annealing at 230 °C, the XRD results of the samples (subject to two different doses) showed formation of Cu3Si. According to RBS, the interdiffusion between Cu and Si atoms after annealing was very insignificant. The reason may be that the formation of Cu3Si after annealing at 230 °C suppressed further interdiffusion between Si and Cu atoms.  相似文献   

11.
The oxidation kinetics of boron carbide pellets were investigated in steam/argon mixtures in the temperature range 1200-1800 °C for steam partial pressures between 0.2 and 0.8 bar and total flows (steam + argon) between 2.5 and 10 g/min resulting in gas velocities from 1.01 to 5.34 m/s. A kinetic model for boron carbide pellet oxidation depending on temperature, steam partial pressure and flow velocity is obtained. The activation energy of the oxidation process was determined to be 163 ± 8 kJ/mol. The strong influence of temperature and steam partial pressure on the boron carbide oxidation kinetics is confirmed. The obtained data suggest the coexistence of two kinetic regimes, one at 1200 °C and the other at 1400-1800 °C, with different dependence on steam partial pressure.  相似文献   

12.
In the present work, we study the oxidation behaviour of NbON multilayer films. The films were deposited by DC magnetron sputtering with a reactive gas pulsing process. The nitrogen flow was kept constant and the oxygen flow was pulsed. Pulse durations of 10 s produced multilayered coatings with a period of λ = 10 nm. Three different films with increasing duty cycles have been deposited.Rutherford backscattering spectroscopy (RBS) was used to study the chemical composition variations at different annealing temperatures (as-deposited, 400 °C, 500 °C and 600 °C) combined with X-ray diffraction (XRD) to identify the crystalline phases formed. At 400 °C, for all films a very thin layer starts to form at the surface with enhanced O concentration. The composition of the deeper part of the samples remains unchanged. At 500 °C, the oxide scale grows, encompassing about half the film thickness. At 600 °C, the process is finished and a single layer is formed with reduced Nb and increased O concentration. Fourier-transformation infrared spectroscopy (FTIR) results confirmed the increase of this surface oxidation, while XRD revealed that crystallization of Nb2O5 occurs at 600 °C.  相似文献   

13.
Alpha-particle radiobiological experiments involve irradiating cells with alpha particles and require accurate positions where the alpha particles hit the cells. In the present work, we prepared thin CR-39 detectors from commercially available CR-39 SSNTDs with a thickness of 100 μm by etching them in 1 N NaOH/ethanol at 40 °C to below 20 μm. The desired final thickness was achieved within ∼8 h. Such etching conditions can provide relatively small roughness of the detector as revealed by atomic force microscope, and thus provide transparent detectors for radiobiological experiments. UV radiation was employed to shorten track formation time on these thin CR-39 detectors. After exposure to UV light (UVA + B radiation) for 2-3 h with doses from 259 to 389 W/cm2, 5 MeV alpha-particle tracks can be seen to develop on these CR-39 detectors clearly under the optical microscope within 2 h in 14 N KOH at 37 °C. As an example for practical use, custom-made petri dishes, with a hole drilled at the bottom and covered with a thin CR-39 detector, were used for culturing HeLa cells. The feasibility of using these thin CR-39 detectors is demonstrated by taking photographs of the cells and alpha-particle tracks together under the optical microscope, which can allow the hit positions on the cells by the alpha particles to be determined accurately.  相似文献   

14.
The effect of rolling and annealing on the microstructure and high temperature creep properties of alloy 617 were investigated. Two types of foil specimens with different thickness reductions were prepared by thermo-mechanical processing. Recrystallization and grain growth were readily observed at specimens annealed at 950 and 1100 °C. The uniform coarse grains increase resistance against creep deformation. The grain size effect in creep deformation was dominant up to 900 °C, while dynamic recrystallization effect became dominant at 1000 °C. Dynamic recrystallization was observed in all the creep deformed foils, even though some specimens had already been (statically) recrystallized during annealing. Steady state creep rates decreased with increasing annealing temperature in the less rolled foils. The apparent activation energy Qapp for the creep deformation increased from 271 to 361 kJ/mol as the annealing temperature increased from 950 to 1100 °C.  相似文献   

15.
We investigated how pretreatment and high-LET beam irradiation affected the ion-track dissolution rate in poly(vinylidene fluoride) (PVDF) films by SEM observations and conductometric analysis in order to develop the preparation methodology of nano-sized ion-track membranes. PVDF thin films irradiated with four types of ion beams were exposed to a 9 mol/dm3 KOH aqueous solution after their storage in air at 120 °C. This heating treatment was found to enhance the etch rate in the latent track, both in the inner core and outer halo regions, without changing that in the bulk, probably due to the formation of parasitic oxidation products facilitating the introduction of the etching agent to improve the etchability. Additionally, the irradiation of heavier higher-LET ions, causing each track to more activated sites (like radicals), was preferable for achieving effective etching.  相似文献   

16.
In this study, palladium film plating was carried out on porous glass supports using the electroless plating technique. This technique was applied to study the effects of bath temperature and reducing agent concentration on the amount and the structure of palladium plated. Hydrazine concentration was fixed at 10 ml/L in the baths using 1 M hydrazine solution while the temperature was changed between 25 and 50 °C. The total mass gain and Pd/Si ratio (wt/wt%) on the surface were obtained as 7.76 mg/cm2 and 68.7 in a bath temperature of 35 °C, respectively. With the help of LM microscope analysis, thickness of the membrane prepared at this temperature was determined as 31 μm. In the studies in which the bath temperature was examined as a parameter, the minimum total mass gain was obtained in a plating bath temperature of 43 °C. In the second part of this study, in order to study the concentration effect of hydrazine, hydrazine concentration was increased to 15 and 20 ml/L at a bath temperature of 43 °C. It was shown that as a result of increasing the hydrazine concentration from 10 ml/L to 15 ml/L, total mass gain increased more than twice and a denser plating was obtained. On the contrary to expectations, a result less successful than in the study of 10 ml/L concentration was obtained through increasing hydrazine concentration to 20 ml/L. This study showed that bath temperature of 25 °C was too low to carry out effectively autocatalytic reaction on the activated surface. Plating bath decomposed in plating studies performed at 43 °C and 50 °C. In the studies where hydrazine concentrations were examined as a parameter, it was observed that the stability of the bath could not be maintained in each of the three baths throughout the plating time. The highest decomposition rate was also predicted for the study carried out at a hydrazine concentration of 20 ml/L. Decomposition seen at high temperatures and high hydrazine concentrations was explained as a consequence of insufficient EDTA concentrations in plating baths.  相似文献   

17.
The morphology of the nanopores obtained by chemical etching on ion-beam irradiated LiNbO3 has been investigated for a variety of ions (F, Br, Kr, Cu, Pb), energies (up to 2300 MeV), and stopping powers (up to 35 keV/nm) in the electronic energy loss regime. The role of etching time and etching agent on the pore morphology, diameter, depth, and shape has also been studied. The transversal and depth profiles of the pore have been found to be quite sensitive to both irradiation and etching parameters. Moreover, two etching regimes with different morphologies and etching rates have been identified.  相似文献   

18.
Low-energy Pb ion implantation into (1 0 0) Si and subsequent high-vacuum electron beam annealing was used to study the potential of sub-surface retention of Pb atoms after applying a high temperature annealing process. 7 keV Pb+ ions were implanted into p-type (1 0 0) Si at room temperature with a fluence of 4 × 1015 ions cm−2. The implantation results in a Pb depth distribution that has a calculated Pb peak concentration of 23.9 at.% at a depth of 8.0 nm. The Pb implanted Si substrates were annealed with a high-current 20 keV electron beam at 200-700 °C for 15 s. The Pb loss by out-diffusion was measured with RBS. Key results are: (i) minimal Pb loss in samples annealed up to 400 °C, (ii) emerging out-diffusion above 400 °C, (iii) retention of Pb atoms in the near-surface region in samples annealed up to 700 °C. Comparison of the RBS data with the calculated evaporation rate of Pb under similar conditions reveals two distinctive temperature ranges in which the measured Pb loss of the implanted samples disagrees with the calculated Pb loss: (1) Pb atoms diffused out of the samples at a higher rate in the temperature range up to 400 °C and (2) the Pb atoms diffused out of the samples at a much slower rate above 450 °C. Both phenomena are attributed to the ion implantation process.  相似文献   

19.
Flash-assisted rapid thermal processing (fRTP) has gained considerable interests for fabrication of ultra-shallow junction in silicon. fRTP can significantly reduce boron diffusion, while attaining boron activation at levels beyond the limits of traditional rapid thermal annealing. The efficiency of fRTP for defect annealing, however, needs to be systematically explored. In this study, a (1 0 0) silicon wafer was implanted with 500 eV boron ions to a fluence of 1 × 1015 cm−2. fRTP was performed with peak temperatures ranging from 1100 °C to 1300 °C for approximately one milli-second. High resolution transmission electron microscopy and secondary ion mass spectrometry were performed to characterize as-implanted and annealed samples. The study shows that fRTP at 1250 °C can effectively anneal defects without causing boron tail diffusion.  相似文献   

20.
The structural evolution of silicon oxide films with Ge+ implantation was traced with a positron beam equipped with positron annihilation Doppler broadening and lifetime spectrometers. Results indicate that the film structure change as a function of the annealing temperature could be divided into four stages: (I) T < 300 °C; (II) 300 °C ? T ? 500 °C; (III) 600 °C ? T ? 800 °C; (IV) T ? 900 °C. In comparison with stage I, the increased positron annihilation Doppler broadening S values during stage II is ascribed to the annealing out of point defects and coalescence of intrinsic open volumes in silicon oxides. The obtained long positron lifetime and high S values without much fluctuation in stage III suggest a rather stable film structure. Further annealing above 900 °C brings about dramatic change of the film structure with Ge precipitation. Positron annihilation spectroscopy is thereby a sensitive probe for the diagnosis of microstructure variation of silicon oxide thin films with nano-precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号