首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
提出了一种可用于标准CMOS工艺下且具有二阶温度补偿电路的带隙基准源。所采用的PTAT2电流电路是利用了饱和区MOSFET的电流特性产生的,具有完全可以与标准CMOS工艺兼容的优点。针对在该工艺和电源电压下传统的启动电路难以启动的问题,引入了一个电阻,使其可以正常启动。基准核心电路中的共源共栅结构和串联BJT管有效地提高了电源抑制比,降低了温度系数。基于TSMC 0.35μm CMOS工艺运用HSPICE软件进行了仿真验证。仿真结果表明,在3.3V供电电压下,输出基准电压为1.2254V,温度系数为2.91×10-6V/℃,低频的电源抑制比高达96dB,启动时间为7μs。  相似文献   

2.
谢应孝  单海校  刘国平 《福建电脑》2012,28(2):162-163,100
分析了传统带隙基准源的基本原理,并在此基础上一款CMOS带隙基准源电路。该电路基于UMC0.18μm CMOS工艺设计,利用cadence软件进行仿真。仿真结果表明,CMOS带隙基准源稳定输出电压1.22V,该电路在温度从-50-100℃进行扫描,其变化率为10.7ppm/℃,电源电压在1.7V-1.9V范围内发生变化时帯隙基准源输出电压变化很小。  相似文献   

3.
设计一种新颖的低电压CMOS带隙基准电压源电路.电路采用了适合低电源电压工作的nMOS输入对管折叠共源共栅运算放大器,并提出一种新颖的启动电路.基于SMICO.35μm标准CMOS工艺,Cadence Spectre仿真结果表明:在低于1-V的电源电压下,所设计的电路能稳定工作,输出稳定的基准电压为622mV,最低电源电压为760mV.不高于100KHz的频率范围内,电源噪声抑制比为-75dB.在-20℃到100℃范围内,温度系数20ppm/℃.  相似文献   

4.
针对高压电源芯片的需要,提出了一种二次曲率补偿的带隙基准源.该电路在传统带隙基准结构的基础上,利用Bipolar管的电流增益随温度呈指数变化的规律,对带隙基准进行高阶温度补偿.该电路具有温度补偿精度高、电路结构简单且能输出高电位电压基准等优点.采用40VBiCMOS高压工艺流片,仿真用Cadence软件中的spectre工具,流片后测试结果为,工作电源电压±12V,输出电压为-10.78V,在-55℃~125℃范围内,温度漂移系数为2.5ppm/℃,在20kHz时基准源输出电源抑制比为100dB.  相似文献   

5.
基于标准0.35umCMOS工艺,采用一级温度补偿电压作为温度曲率校正电压,与传统采用PTAT电压作为温度曲率校正电压相比,获得了一个电路结构简单,性能更好的带隙基准源。使用Hspice进行仿真,仿真结果表明电路可以在-20-100℃范围内,平均温度系数约2ppm/℃,工作电压为1V左右,获得了一个高性能的带隙基准电压源。该带隙基准源可应用于高精度模数转换器(ADC)、数模转换器(DAC)和系统集成芯片(SOC)中。  相似文献   

6.
设计了一款具有高稳定性,低功耗的带隙基准源,采用1.5μm B iCMOS工艺制造,在-40℃~100℃它们的平均温度系数为29×10-6/℃,电源电压抑制比为60dB。在电源电压为3.7V的情况下工作功耗为144μW,低功耗高精度的特性使它非常适合在混合信号设计的IC中应用。  相似文献   

7.
采用二级温度补偿对传统电流模式结构的带隙基准电压电路进行改进,基于chartered 0.35um cmos工艺,使用cadencespectre进行仿真,结果表明工作电压为2v时,电路可以输出100mv-1.8v的宽范围电压;在-20-120温度范围内,平均温度系数约3ppm/℃.  相似文献   

8.
基于标准0.6umCMOS工艺,设计依据在亚阈值区工作的一阶温度补偿电路,采用VPTAT电压驱动曲率校正电路,对一阶温度补偿电路进行高阶温度补偿,获得了一种电路结构简单,性能较好的带隙基准源。经过Hspice仿真,仿真结果表明电路可以在-10-150范围内,平均温度系数约9.9ppm/oC;工作电压为1.4V。该带隙基准源可应用于高精度模数转换器(ADC)、数模转换器(DAC)和系统集成芯片(SOC)中。  相似文献   

9.
0.18μm CMOS带隙基准电压源的设计   总被引:1,自引:1,他引:0  
基准电压源可广泛应用于A/D、D/A转换器、随机动态存储器、闪存以及系统集成芯片中.使用0.18 μm CMOS工艺设计了具有高稳定度、低温漂、低输出电压为0.6 V的CMOS基准电压源.  相似文献   

10.
何一卿  郭璐  郑方 《微计算机信息》2007,23(19):222-223,177
本文介绍了一种高精度高电源抑制的CMOS带隙电压基准,电源电压3V.该电路的实现是基于0.6um 5V的CMOS工艺.为了达到较高的精度和电源抑制比,电路中采用了一个PMOS电流源做调整管,以保证基准核的电流恒定.仿真结果表明,该基准电路在低频下的电源抑制比可达到-88dB,温度变化范围从-40℃至120℃.时,温度系数只有3.5ppm,输出电压误差为0.65mV.  相似文献   

11.
设计并实现了一种新的高PSRR、低TC带隙基准源。重点研究了带隙基准源电源抑制能力,尤其是高频PSRR,达到宽频带范围PSRR高性能指标。采用0.35μm BiCMOS工艺进行仿真,结果表明,PSRR在1 Hz频率下达-108.5 dB,在15 MHz频率下达-58.9 dB;采用二次温漂补偿电路使得带隙基准源常温下输出参考电压1.183 V,在-40℃95℃温度范围内,温漂系数低达1.5 ppm/℃。  相似文献   

12.
一种低功耗高精度带隙基准的设计   总被引:2,自引:0,他引:2  
基于U MC 0.25μm BCD工艺,在传统带隙基准结构的基础上,设计了一种具有低功耗、高精度的基准,同时利用N MOS管工作在亚阈值区域时漏电流和栅极电压的指数特性,对基准温度特性曲线进行二阶补偿。仿真结果表明,电源电压5V时,静态电流功耗为3.16μA;电源电压2.5 V~5.5 V,基准电压变化53μV;温度在-40℃~130℃内,电路的温度系数为0.86×10-6/℃;三种工艺角下,低频时电路电源抑制比都小于-95 d B。  相似文献   

13.
基于90 nm CMOS标准工艺,设计了一种低温漂的带隙基准源电路.一种结构新颖的温度曲率校正电路被采用,作为一级温度补偿电路的曲率校正电路.Hspice仿真结果表明:所设计电压源在温度-20℃~+120℃范围内,平均温度系数约为2.2 ppm/℃,获得了一个低压高精度的带隙基准电压源.  相似文献   

14.
本文提出了一种基于双极性工艺的高性能带隙基准电压源的设计。该电路结构简单,性能优异。用Spectre进行仿真,结果表明,在-50~90℃的温度范围内,其温度系数为5.7ppm/℃;在3~15V的电源电压内,电源线性调整率为1.0mv/V,电源抑制比(PSRR)为-55dB。  相似文献   

15.
根据不同直流电压基准源芯片的温度漂移互相独立的特点,研究单个电压基准源芯片输出的温度特性,提出一种利用平均值电路降低基准电压温度漂移系数的方法。实验结果表明:温度系数最优为4.5μV/℃的4个基准源芯片,经过平均电路融合输出后,温度系数减小到2.46μV/℃,可以有效地降低直流电压基准的温度漂移系数。  相似文献   

16.
提出一种应用于RFID芯片的低功耗、可校准基准源电路。设计采用了全MOS管以及电阻来实现,大部分管子都工作在亚阈值状态,同时可以产生基准电压和基准电流。该基准源采用了GSMC 0.13 μm 1P5M工艺来实现,其最大工作电流不超过350 nA,供电电压为1.2 V,并且在0.9 V~2.5 V电压下均可工作。在-45℃~65℃的工作温度下,电压基准源的温度系数为30.3 ppm/℃,电流基准源的温度系数为20.7 ppm/℃。  相似文献   

17.
根据汽车发动机控制芯片的工作环境,针对常见的温度失效问题,提出了一种应用在发动机控制芯片中的带隙基准电压源电路。该电路采用0.181.LmCMOS工艺,采用电流型带隙基准电压源结构,具有适应低电源电压、电源抑制比高的特点。同时还提出一种使用不同温度系数的电阻进行高阶补偿的方法,实现了较宽温度范围内的低温度系数。仿真结果表明,该带隙基准电路在一50℃~+125℃的温度范围内,实现平均输出电压误差仅5.2ppm/℃,可用于要求极端严格的发动机温度环境。该电路电源共模抑制比最大为99dB,可以有效缓解由发动机在
Abstract:
The paper presents a bandgap reference power source, which is designed to accommodate the wide range temperature environment for engine control modules and to avoid circuit invalidation caused by temperature. The bandgap reference based on current summing  相似文献   

18.
为了消除由于晶体管不匹配产生的随机失调对带隙基准源精度的影响,设计了一种采用斩波调制技术的带隙基准电压源。该方法采用对称性OTA的结构来减小带隙基准电压源的系统失调,并利用带隙基准核心电路中的与绝对温度成正比(PTAT)的电流源为OTA提供自适应偏置,从而较小了整个电路的功耗。通过基于0.35μm CMOS工艺并使用Cadence Spectre工具对电路进行仿真,结果表明:斩波频率为100 Hz时,基准电压在室温(27℃)的输出为1.232 V,该带隙基准的供电电压的范围为1.4~3 V;在电压为3 V时,在-40~125℃温度范围内的温度系数为24.6 ppm/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号