首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single Shot Scan methods, which acquire all the necessary data for reconstruction with one excitation, are very useful methods to minimize motion artifacts. Single Shot Scan can be categorized in 2 groups, one is EPI method using gradient by Echo data acquisition, and another is SSFSE method using RF. SSFSE method is Single Shot FSE method using 0.5 NEX. SSFSE produces images with less motion artifacts and heavy PD and T2 images with high contrast. New RF reduces Echo Space and minimizes image quality degradation caused by Single Shot. SSFSE is useful for long T2 like MRCP. Long TE mode can be used with very long ETE even with 0.5 NEX. New applications development for Single Shot using RF is awaited in the future.  相似文献   

2.
Reduction of the slice-select refocusing gradient in two-dimensional multislice imaging results in asymmetry of the k-space representation of collected data along the slice-select direction. Standard methods of partial Fourier reconstruction developed for other methods of asymmetric k-space sampling can be used to reconstruct these data with final through-plane resolution smaller than the collected slice thickness. This method can be used for reducing scan time in the same manner as asymmetric sampling in the phase-encoded direction. In addition, the reduced refocusing gradient reduces minimum TE and motion artifacts in the same manner as for asymmetric sampling in the frequency-encoded direction (fractional echoes). Results using a resolution phantom and a flow phantom illustrate these concepts.  相似文献   

3.
Imaging time constitutes a major limitation of phase-contrast (PC) angiography. It is possibly the main disadvantage of PC methods over the time-of-flight (TOF) methods that actually are used clinically. This relatively long imaging time comes from the fact that conventional PC methods require the acquisition of at least four images with different velocity sensitization to reconstruct a single angiogram (1, 2). However, more than one-half of the information gathered through the acquisition of these four images is either redundant or simply discarded. We propose a faster approach to making PC angiograms in which the quantity of data acquired is diminished by as much as a factor 2. This is made possible by encoding velocity information in both the phase and magnitude of the image. Due to the use of extra radiofrequency (RF) and gradient waveforms, decreases in data requirements do not translate in a direct manner into decreases in imaging time. Nevertheless, significant reductions in imaging time are achieved with the present approach.  相似文献   

4.
A diffusion-weighted fast spin-echo (FSE) imaging sequence for high-field MR microscopy was developed and experimentally validated in a phantom and in a live rat. Pulsed diffusion gradients were executed before and after the initial 180 degrees pulse in the FSE pulse train. This produced diffusion-related reductions in image signal intensity corresponding to gradient ("b") factors between 1.80 and 1352 s/mm2. The degree of diffusion weighting was demonstrated to be independent of echo train length for experiments using trains up to 16 echoes long. Quantitative measurements on a phantom and on a live rat produced diffusion coefficients consistent with literature values. Importantly, the eight- to 16-fold increase in imaging efficiency with FSE was not accompanied by a significant loss of spatial resolution or contrast. This permits acquisition of in vivo three-dimensional data in time periods that are appropriate for evolving biological processes. The combination of accurate diffusion weighting and high spatial resolution provided by FSE makes the technique particularly useful for MR microscopy.  相似文献   

5.
A new ultrafast magnetic resonance imaging pulse sequence named radial echo-planar imaging (rEPI) is introduced. The sequence is based on a modification of the echo-planar imaging (EPI) sequence to scan k-space radially, in an attempt to combine the speed of EPI with the benefits of radial sampling. Like in EPI, all the desired lines in k-space are scanned consecutively in opposite directions. The unique feature of this new sequence, however, is that the orientation of the readout gradient is incrementally rotated, so that all the echoes are refocused through the center of k-space. Therefore, rEPI data are acquired in a polar grid, and image reconstruction can be done either by means of filtered back-projection or by regridding the data to a Cartesian matrix followed by 2D Fourier transform. First results show that rEPI images can be acquired with the same speed and signal-to-noise ratio of EPI images. rEPI images are also shown to be less sensitive to off-resonance effects than EPI images. Further studies are underway to investigate the usefulness of rEPI for spectroscopic imaging and applications affected by motion.  相似文献   

6.
This study describes a new method for analysis of dynamic MR contrast data that greatly increases the time available for data acquisition. The capillary input function, CB(t), is estimated from the rate of contrast agent uptake in a reference tissue such as muscle, based on literature values for perfusion rate, extraction fraction, and extracellular volume. The rate constant for contrast uptake (the product of perfusion rate, F, and extraction fraction, E; F x E) is then determined in each image pixel using CB(t), extracellular volume (relative to the reference tissue) measured from MR and the tissue concentration of contrast media as a function of time calculated from the MR data. The "reference tissue method" was tested using rats with mammary (n = 10) or prostate (n = 15) tumors implanted in the hindlimb. Dynamic MR images at 4.7 T were acquired before and after Gd-DTPA intravenous bolus injections to determine F x E(Gd-DTPA). Acquisition parameters were optimized for detection of the first pass of the contrast agent bolus, so that "first-pass analysis" could be used as the "gold standard" for determination of F x E. The accuracy of values of F x E determined using the reference tissue method was determined based on comparison with first-pass analysis. In some cases, deuterated water (D2O) was injected i.v. immediately after Gd-DTPA measurements, and the reference tissue method was used to calculate F, based on the rate of uptake of D2O. Comparison of rate constants for Gd-DTPA uptake and D2O uptake allowed calculation of E(Gd-DTPA). Values for F x E(Gd-DTPA), F, and E(Gd-DTPA) were determined for selected regions and on a pixel-by-pixel basis. Values for F x E and E(Gd-DTPA) measured using the reference tissue method correlated well (P = .90 with a standard error of +/- .016, n = 15) with values determined based on first-pass contrast media uptake. The reference tissue method has important advantages: (a) A large volume of reference tissue can be used to determine the contrast agent input function with high precision. (b) Data obtained for 20 minutes after injection are used to calculate F or F x E. The greatly increased acquisition time can be used to increase the spatial resolution, field of view or SNR of measurements. The reference tissue method is most useful when the volume of tissue that must be imaged and/or the spatial resolution required precludes use of traditional first-pass methods.  相似文献   

7.
SiMultaneous Acquisition of Spatial Harmonics (SMASH) is a new fast-imaging technique that increases MR image acquisition speed by an integer factor over existing fast-imaging methods, without significant sacrifices in spatial resolution or signal-to-noise ratio. Image acquisition time is reduced by exploiting spatial information inherent in the geometry of a surface coil array to substitute for some of the phase encoding usually produced by magnetic field gradients. This allows for partially parallel image acquisitions using many of the existing fast-imaging sequences. Unlike the data combination algorithms of prior proposals for parallel imaging, SMASH reconstruction involves a small set of MR signal combinations prior to Fourier transformation, which can be advantageous for artifact handling and practical implementation. A twofold savings in image acquisition time is demonstrated here using commercial phased array coils on two different MR-imaging systems. Larger time savings factors can be expected for appropriate coil designs.  相似文献   

8.
Magnetic resonance imaging is frequently complicated by the presence of motion and susceptibility gradients. Also, some biologic tissues have short T2s. These problems are particularly troublesome in fast spin-echo (FSE) imaging, in which T2 decay and motion between echoes result in image blurring and ghost artifacts. The authors reduced TE in conventional spin-echo (SE) imaging to 5 msec and echo spacing (E-space) in FSE imaging to 6 msec. All magnetic gradients (except readout) were kept at a maximum, with data sampling as fast as 125 kHz and only ramp waveforms used. Truncated sinc radio-frequency pulses and asymmetric echo sampling were also used in SE imaging. Short TE (5.8 msec) SE images of the upper abdomen were compared with conventional SE images (TE = 11 msec). Also, FSE images with short E-space were compared with conventional FSE images in multiple body sites. Short TE significantly improved the liver-spleen contrast-to-total noise ratio (C/N) (7.9 vs 4.1, n = 9, P < .01) on T1-weighted SE images, reduced the intensity of ghost artifacts (by 34%, P < .02), and increased the number of available imaging planes by 30%. It also improved delineation of cranial nerves and reduced susceptibility artifacts. On short E-space FSE images, spine, lung, upper abdomen, and musculoskeletal tissues appeared crisper and measured spleen-liver C/N increased significantly (6.9 vs 4.0, n = 12, P < .01). The delineation of tissues with short T2 (eg, cartilage) and motion artifact suppression were also improved. Short TE methods can improve image quality in both SE and FSE imaging and merit further clinical evaluation.  相似文献   

9.
The effects of the noise of echo-planar functional magnetic resonance imaging on auditory cortex responses were compared for two methods of acquiring functional MR data. Responses observed with a distributed volume acquisition sequence were compared to those obtained with a clustered volume acquisition sequence. In the former case, slices from the volume were acquired at equal intervals within the repetition time, whereas the latter acquired all slices in rapid succession at the end of the imaging period. The clustered volume acquisition provides a period of quiet during which a stimulus may be presented uninterrupted and uncontaminated by the noise of echo-planar imaging. Both sequences were implemented on a General Electric Signa imager retrofitted for echo-planar imaging by Advanced NMR Systems, Inc. The sequences were used to acquire 60 images per slice of a fixed volume of cerebral cortex while subjects were presented an instrumental music stimulus in an On vs. Off paradigm. Data were acquired for both sequences using TR values of 2, 3, 4, 6 and 8 sec. The clustered volume acquisition sequence was found to yield greater measures of dynamic range (percent signal change, mean statistical power per unit imaging time) across the tested range of TR values. Observations of more consistent spatial extent of responses, greater mean signal changes, and higher and more consistent values of mean t-statistic per unit imaging time demonstrate the efficacy of using a clustered volume acquisition for fMRI of auditory cortex.  相似文献   

10.
A new double-echo half-Fourier single-shot turbo spin echo technique has been implemented in which two images are obtained per excitation pulse, one with an echo time (TE) of 60 ms and another with a TE of 438 ms. The acquisition window per image is 380 ms and is determined by the echo spacing of 4.3 ms and the echo train length of 88 for images with resolution of 160 x 256. No breath holding was performed. The aim of the study was to test whether the additional information of the late TE image improves the characterization of liver lesions. Twenty-eight patients with 39 focal liver lesions (9 cysts, 11 hemangiomas, and 19 solid lesions) were imaged with the new technique, and signal intensity (SI) ratios of lesion and liver were obtained. A t-test analysis showed that in the TE 60 ms image, SI ratios of cysts and hemangiomas were not significantly different, whereas in the TE 438 ms images the two types of lesions can be classified. Signal intensity ratios of solid lesions were in both images clearly lower than those of cysts and hemangiomas. The technique, therefore, seems a promising and straightforward new tool for the characterization of liver lesions.  相似文献   

11.
Recent advances in functional magnetic resonance imaging (fMRI) at > or = 1.5 T magnetic field strength and with high speed single-shot echo planar imaging techniques have made it possible to monitor local changes in cerebral blood volume, cerebral blood flow, and blood oxygenation level in response to sensory stimulation, simple motor activity, and possibly also to more complex cognitive processing. However, fMRI has also been accomplished on conventional MR scanners of medium field strength (approximately 1.0 T) using special pulse sequences and appropriate methods for image analysis. We present results from six subjects on photic stimulation using a standard 1.0 T MR scanner together with special software for off-line image analysis. Continuous serial T2-weighted imaging were performed for 6 minutes in the plane of the calcarine fissure. There were 3 repetitions of 1 minute resting state of darkness (OFF) and 1 minute activated state (ON) with 8 Hz flicker stimulation. To directly map these functional images to the underlying anatomy we also acquired a high resolution T1-weighted image from the same axial slice. The results demonstrated that stimulus-related signals can be obtained from primary visual cortex with a conventional 1.0 T MR scanner. Further methodological improvements are discussed and related to present and future possibilities for the use of fMRI within psychophysiology.  相似文献   

12.
Averaged single trials (AST) allowed the functional magnetic resonance imaging (fMRI) response to auditory stimuli to be measured at high temporal (1 s) and spatial (0.1 cm3) resolution. Using this paradigm we investigated the transient signal response to 100-ms tone bursts in trains of between 100 ms and 25.5 s in total duration. We have demonstrated that the fMRI response to such auditory stimuli is approximately linear for trains of 6 s and longer, but that shorter stimuli produce signals that are larger than might be expected from the response to the longer stimuli. This nonlinear behavior can be modeled if an adaptive response to each stimulus is assumed. A study using a novel paradigm was also performed in order to study the influence of scanner noise during fMRI experiments on the auditory system response to tones. This study demonstrated that the temporal response to 700-ms tone stimuli is modified when performed in the presence of scanner gradient noise, the modification being a small but significant increase (P < 0.05) in the magnitude of the response. Finally the ability to measure the onset of functional activation using the AST method was examined. It was found, with the aid of computer simulation that a sampling rate of one image per second is adequate to distinguish temporal responses. Using the data acquired in this study, onset times were calculated for the auditory cortex, and these results are consistent with current models of functional activation.  相似文献   

13.
An interleaved gradient-echo echo-planar imaging (IGEPI) sequence was modified for and applied to dynamic contrast-enhanced imaging of the heart. Using IGEPI, images with 3.0 x 3.9 mm nominal in-plane resolution are acquired in 100 ms, enabling eight slices per heartbeat for a heart rate of 60 beats/min. The acquisition speed and use of saturation prepulses allows acquisition of short- and long-axis images during the same contrast bolus. IGEPI maintains the acquisition characteristics required for performing a quantitative first-pass perfusion analysis as well as providing improved coverage compared with conventional fast gradient echo.  相似文献   

14.
An automated method for analysis of in vivo proton magnetic resonance (MR) spectra and reconstruction of metabolite distributions from MR spectroscopic imaging (MRSI) data is described. A parametric spectral model using acquisition specific, a priori information is combined with a wavelet-based, nonparametric characterization of baseline signals. For image reconstruction, the initial fit estimates were additionally modified according to a priori spatial constraints. The automated fitting procedure was applied to four different examples of MRS data obtained at 1.5 T and 4.1 T. For analysis of major metabolites at medium TE values, the method was shown to perform reliably even in the presence of large baseline signals and relatively poor signal-to-noise ratios typical of in vivo proton MRSI. Identification of additional metabolites was also demonstrated for short TE data. Automated formation of metabolite images will greatly facilitate and expand the clinical applications of MR spectroscopic imaging.  相似文献   

15.
A technique is described for acquiring phosphocreatine (PCr) images of skeletal muscle using a rapid acquisition with relaxation enhancement (RARE) pulse sequence. All of the phosphorus metabolites other than PCr are forced to dephase within the first few echoes, whereas the Carr-Purcell Meiboom-Gill (CPMG) pulse sequence maintains a high PCr signal long enough to acquire 64 echoes in a single shot. Axial PCr images of a human forearm with a signal-to-noise ratio of 9 were acquired in 2 min. The effect of the refocusing pulse section profile on the ratio of desired to undesired metabolite signal is demonstrated.  相似文献   

16.
An algorithm is described for reducing ghost artifacts in echo planar imaging (EPI) using phase corrections derived from images reconstructed using only even or odd k-space lines. The N/2 ghost, that arises principally from time-reversal of alternate k-space lines, was significantly reduced by this algorithm without the need for a calibration scan. In images obtained in eight subjects undergoing EPI for auditory functional MRI (fMRI) experiments, N/2 ghost intensity was reduced from 10.3% +/- 2.1% (range: 7.9-14.1%) to 4.5% +/- 0.2% (range: 4.1-4.9%) of parent image intensity, corresponding to a percent reduction in ghost intensity of 54% +/- 9% (range: 43-65%), and the algorithm restored this intensity to the parent image. It provided a significant improvement in image appearance, and increased the correlation coefficients related to neural activation in functional MRI studies. The algorithm provided reduction of artifacts from all polynomial orders of spatial phase errors in both spatial directions. The algorithm did not eliminate N/2 ghost intensity contributed by field inhomogeneities, susceptibility, or chemical shift.  相似文献   

17.
Temporally resolved 3D phase-contrast imaging   总被引:1,自引:0,他引:1  
A conventional 3D phase contrast acquisition generates images with good spatial resolution, but often gives rise to artifacts due to pulsatile flow. 2D cine phase contrast, on the other hand, can register dynamic flow, but has a poor spatial resolution perpendicular to the imaging plane. A combination of both high spatial and temporal resolution may be advantageous in some cases, both in quantitative flow measurements and in MR angiography. The described 3D cine phase contrast pulse sequence creates a temporally resolved series of 3D data sets with velocity encoded data.  相似文献   

18.
This study compared attenuation compensated, myocardial SPECT images reconstructed from 180 degrees and 360 degrees data to determine if either data acquisition method might yield improved image quality. Specifically, this study analyzed how the use of either 180 degrees or 360 degrees data affects: (a) the relative count density distribution, (b) defect contrast and (c) level of statistical noise in the left ventricular (LV) wall in the reconstructed SPECT images. METHODS: Using the three-dimensional MCAT phantom simulating 201Tl uptake in the upper torso and the SIMSET Monte Carlo code, noise-free projection datasets for both 180 degrees (45 degrees LPO to 45 degrees RAO) and 360 degrees acquisition were generated with the effects of nonuniform attenuation, collimator-detector response and scatter. In addition, low-noise experimental phantom data were acquired over 180 degrees and 360 degrees. Assuming the same total acquisition time, four sets of noisy projection data were simulated from scaled noise-free, simulated data for the following acquisitions: (a) 180 degrees and (b) 360 degrees data acquired on a 90 degrees dual-detector system and (c) 180 degrees and (d) 360 degrees data acquired on a 120 degrees triple-detector system. For each of the four acquisition schemes, 400 realizations of noisy projection data were generated, and the normalized s.d. in the reconstructed images was calculated for five ROIs in the LV wall. Images were reconstructed with nonuniform attenuation compensation using ML-EM algorithm for 25, 50 and 75 iterations. RESULTS: Both the simulated noise-free and experimental low-noise images reconstructed from 180 degrees and 360 degrees data showed nearly identical count densities and defect contrasts in the LV wall. For the 90 degrees dual-detector system, 180 degrees images showed less noise, while for the 120 degrees triple-detector system, 360 degrees showed less noise; however, these differences in noise level were extremely small after a smoothing filter was applied. The 180 degrees images acquired with the 90 degrees dual-detector system showed the same noise level as the 360 degrees images acquired with the 120 degrees triple-detector system, so neither system geometry had an advantage with respect to reduced noise in the SPECT images. CONCLUSION: When nonuniform attenuation compensation is included in the reconstruction, the count density in the LV wall is nearly identical for 180 degrees and 360 degrees SPECT images, and the 90 degrees dual-detector and 120 degrees triple-detector SPECT systems produced similar SPECT images for the same total acquisition time.  相似文献   

19.
In magnetic resonance imaging, spatial localization is usually achieved using Fourier encoding which is realized by applying a magnetic field gradient along the dimension of interest to create a linear correspondence between the resonance frequency and spatial location following the Larmor equation. In the presence of B0 inhomogeneities along this dimension, the linear mapping does not hold and spatial distortions arise in the acquired images. In this paper, the problem of image reconstruction under an inhomogeneous field is formulated as an inverse problem of a linear Fredholm equation of the first kind. The operators in these problems are estimated using field mapping and the k-space trajectory of the imaging sequence. Since such inverse problems are known to be ill-posed in general, robust solvers, singular value decomposition and conjugate gradient method, are employed to obtain corrected images that are optimal in the Frobenius norm sense. Based on this formulation, the choice of the imaging sequence for well-conditioned matrix operators is discussed, and it is shown that nonlinear k-space trajectories provide better results. The reconstruction technique is applied to sequences where the distortion is more severe along one of the image dimensions and the two-dimensional reconstruction problem becomes equivalent to a set of independent one-dimensional problems. Experimental results demonstrate the performance and stability of the algebraic reconstruction methods.  相似文献   

20.
Functional MRI (fMRI) was used to examine human brain activity within the dorsolateral prefrontal cortex during a sensorimotor task that had been proposed to require selection between several responses, a cognitive concept termed "willed action" in a positron emission tomography (PET) study by Frith et al. [Frith, C. D., Friston, K., Liddle, P. F. & Frackowiak, R. S. J. (1991) Proc. R. Soc. London Ser. B 244, 241-246]. We repeated their sensorimotor task, in which the subject chooses to move either of two fingers after a stimulus, by fMRI experiments in a 2.1-T imaging spectrometer. Echo-planar images were acquired from four coronal slices in the prefrontal cortex from nine healthy subjects. Slices were 5 mm thick, centers separated by 7 mm, with nominal in-plane spatial resolution of 9.6 x 5.0 mm2 for mean data. Our mean results are in agreement with the PET results in that we saw similar bilateral activations. The present results are compared with our previously published fMRI study of a verbal fluency task, which had also been proposed by Frith et al. to elicit a "willed action" response. We find a clear separation of activation foci in the left dorsolateral prefrontal cortex for the sensorimotor (Brodmann area 46) and verbal fluency (Brodmann area 45) tasks. Hence, assigning a particular activated region to "willed action" is not supported by the fMRI data when examined closely because identical regions are not activated with different modalities. Similar modality linked activations can be observed in the original PET study but the greater resolution of the fMRI data makes the modality linkages more definite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号