首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
BACKGROUND: Although pulsatile and nonpulsatile cardiopulmonary bypass (CPB) do not differentially affect cerebral blood flow (CBF) or metabolism during hypothermia, studies suggest pulsatile CPB may result in greater CBF than nonpulsatile CPB under normothermic conditions. Consequently, nonpulsatile flow may contribute to poorer neurologic outcome observed in some studies of normothermic CPB. This study compared CBF and cerebral metabolic rate for oxygen (CMRO2) between pulsatile and nonpulsatile CPB at 37 degrees C. METHODS: In experiment A, 16 anesthetized New Zealand white rabbits were randomized to one of two pulsatile CPB groups based on pump systolic ejection period (100 and 140 ms, respectively). Each animal was perfused at 37 degrees C for 30 min at each of two pulse rates (150 and 250 pulse/min, respectively). This scheme created four different arterial pressure waveforms. At the end of each perfusion period, arterial pressure waveform, arterial and cerebral venous oxygen content, CBF (microspheres), and CMRO2 (Fick) were measured. In experiment B, 22 rabbits were randomized to pulsatile (100-ms ejection period, 250 pulse/min) or nonpulsatile CPB at 37 degrees C. At 30 and 60 min of CPB, physiologic measurements were made as before. RESULTS: In experiment A, CBF and CMRO2 were independent of ejection period and pulse rate. Thus, all four waveforms were physiologically equivalent. In experiment B, CBF did not differ between pulsatile and nonpulsatile CPB (72 +/- 6 vs. 77 +/- 9 ml.100 g-1.min-1, respectively (median +/- quartile deviation)). CMRO2 did not differ between pulsatile and nonpulsatile CPB (4.7 +/- 0.5 vs. 4.1 +/- 0.6 ml O2.100 g-1.min-1, respectively) and decreased slightly (0.4 +/- 0.4 ml O2.100 g-1.min-1) between measurements. CONCLUSIONS: During CPB in rabbits at 37 degrees C, neither CBF nor CMRO2 is affected by arterial pulsation. The absence of pulsation per se is not responsible for the small decreases in CMRO2 observed during CPB.  相似文献   

2.
BACKGROUND: It is unclear whether nonpulsatile perfusion adversely affects the brain. This study compared cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) betwen pulsatile and nonpulsatile cardiopulmonary bypass (CPB) in rabbits at 27 degrees C. METHODS: In experiment A, 24 anesthetized New Zealand white rabbits underwent pulsatile CPB at 27 degrees C, using alpha-stat acid-base management. Animals were randomized to three groups based upon the duration of the period of systolic ejection (100, 120, 140 ms) and were perfused for 20 min at each of three pulse rates (150, 200, 250 pulse/min), generating nine arterial pressure waveforms. Arterial pressure waveform, arterial and cerebral venous oxygen content, CBF (radiolabeled microspheres), and CMRO2 (Fick) were measured at the end of each 20-min period. In experiment B, 16 anesthetized rabbits were randomized to pulsatile (120-ms ejection period, 250 pulse/min) or nonpulsatile CPB at 27 degrees C. AFter 1 h, arterial pressure waveform, arterial and cerebral venous oxygen content, CBF and CMRO2 were measured. RESULTS: In experiment A, CBF and CMRO2 were independent of ejection period and pulse rate. Thus, all nine waveforms were physiologically equivalent. In experiment B, CBF did not differ between pulsatile and nonpulsatile bypass, 30 +/- 4 versus 32 +/- 5 ml.100 g-1.min-1, respectively. CMRO2 did not differ between pulsatile and nonpulsatile bypass, 1.7 +/- 0.2 versus 1.6 +/- 0.2 ml.100 g-1.min-1, respectively. CONCLUSIONS: During CPB in rabbits at 27 degrees C, neither CBF nor CMRO2 is affected by flow character.  相似文献   

3.
BACKGROUND: It has been postulated that anesthetic agents that reduce cerebral metabolic rate will protect the brain against ischemia when electroencephalographic (EEG) activity is persistent, but will provide no protection when ischemia is severe enough to cause EEG isoelectricity. No outcome studies have addressed this issue. The authors studied anesthetic agents to determine if they provide differential effects on outcome from global cerebral ischemic insults that cause either an attenuated or isoelectric EEG. METHODS: Fasted rats were subjected to either (1) incomplete ischemia (attenuated EEG; 20 min of mean arterial pressure [MAP] = 50 mmHg and bilateral carotid occlusion) or (2) near-complete ischemia (isoelectric EEG; 10 min of MAP = 30 mmHg and bilateral carotid occlusion) while anesthetized with 1.4% isoflurane, 1 mg x kg(-1) x min(-1) ketamine, or 25 microg x kg(-1) x h(-1) 70% nitrous oxide and fentanyl. The brain was maintained at normothermia during ischemia and for 22 h after ischemia. Five days later, hippocampal CA1 and cortical injury were measured. RESULTS: There was no difference among anesthetic agents during incomplete ischemia for mean +/- SD percentage dead CA1 neurons (fentanyl, 38%+/-20%; isoflurane, 31%+/-10%; ketamine, 40%+/-19%; P = 0.38). During near-complete ischemia, there was a difference among anesthetic agents (fentanyl, 88%+/-9%; isoflurane, 37%+/-20%; ketamine, 70%+/-28%; P = 0.00008). Isoflurane was protective compared with fentanyl (P = 0.00007) and ketamine (P = 0.0061). There was no difference between fentanyl and ketamine (P = 0.143). Similar observations were made in the cortex. Neurologic function correlated with histologic damage. CONCLUSIONS: Outcome from near-complete but not incomplete cerebral ischemia depended on the anesthetic agent administered during the ischemic insult.  相似文献   

4.
The effects of mild (33 degrees C) and moderate (29 degrees C) hypothermia were investigated to determine which temperature was more effective against compression-induced cerebral ischemia. Eighteen cats were anesthetized. The animals were divided into three groups according to deep-brain temperature (control, 37 degrees C; mild hypothermia, 33 degrees C; and moderate hypothermia, 29 degrees C). Intracranial pressure (ICP) and cerebral blood flow (CBF) were monitored, the latter by hydrogen clearance. Arteriovenous oxygen difference (AVDO2) and cerebral venous oxygen saturation (ScvO2) were measured in blood samples from the superior sagittal sinus. The cerebral metabolic rate of oxygen (CMRO2) and the cerebral metabolic rate of lactate (CMR lactate) were calculated. Extracellular glutamate was measured by microdialysis. ICP was increased by inflation of an epidural balloon until CBF became zero, and this ischemia was maintained for 5 min, after which the balloon was quickly deflated. All parameters were recorded over 6 h. Evans blue was injected to examine vascular permeability changes. CBF was decreased by 56% by mild hypothermia and by 77% by moderate hypothermia. Mild hypothermia had a coupled metabolic suppression whereas moderate hypothermia significantly increased AVDO2 and decreased ScvO2, producing a low CBF/CMRO2 (relative ischemia). After balloon deflation, all three groups showed reactive hyperemia, which was significantly reduced by mild and moderate hypothermia. CBF then decreased to 50% of pre-inflation values and ScvO2 decreased (post-ischemic hypoperfusion). CBF/CMRO2, ScvO2, and AVDO2 did not differ significantly between the three groups. After balloon deflation, all three groups showed increased CMR lactate, which was significantly reduced by mild and moderate hypothermia. Extracellular glutamate increased in control animals (3.8 +/- 1.72 microM), an effect most effectively suppressed in the mild hypothermia group (1.0 +/- 0.46 microM). Damaged tissue volumes as indicated by Evans blue dye extravasation were 729 +/- 89 mm3 in control, 247 +/- 56 mm3 in mild hypothermia, and 267 +/- 35 mm3 in moderate hypothermia animals. These data suggest that mild hypothermia (33 degrees C) might be the optimal brain temperature to treat compression-related cerebral ischemia.  相似文献   

5.
The purpose of this study was to correlate changes in cerebral blood flow velocity (Vmean) with cerebral blood flow (CBF) during isoflurane anesthesia in dogs. The relation between cerebral oxygen consumption (CMRO2) and electroencephalogram (EEG) analysis also was investigated. Blood flow velocity was measured in the middle cerebral artery using a pulsed transcranial Doppler (TCD). CBF was measured with radioactive microspheres. EEG was measured over both hemispheres and median EEG frequency (median frequency) was calculated after fast Fourier transformation. Baseline anesthesia was maintained with 50% nitrous oxide in oxygen and 50 micrograms.kg-1 x h-1 fentanyl. Animals of Group I (control, n = 6) were not given isoflurane. Data were recorded at baseline, and at 30, 60, and 90 min. There was no significant change in any variable over time. In Group II (n = 7), data were recorded at baseline and at 1%, 2%, and 3% end-tidal isoflurane. Mean arterial pressure was maintained at baseline levels by phenylephrine infusion. CBF increased from 70.8 +/- 10.6 mL.100g-1 x min-1 at baseline to 146.1 +/- 36.9 mL.100 g-1 x min-1 with 3% isoflurane (P < 0.01). Vmean increased from 38.3 +/- 6.7 cm/s to 65.6 +/- 9.7 cm/s (P < 0.01). The correlation between relative changes in CBF and Vmean was r = 0.94 (P < 0.01). With 1% isoflurane the EEG shifted to slow-wave, high-voltage activity, and median frequency decreased from 5.9 +/- 0.7 Hz to 1.4 +/- 0.4 Hz (P < 0.05). Median frequency was not decreased further during 2% and 3% isoflurane anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
BACKGROUND: The authors postulated that hypothermic neuroprotection can be attributed to a delayed onset of ischemic depolarization. METHODS: Halothane-anesthetized rats were prepared for near-complete forebrain ischemia. Direct current (DC) potential microelectrodes were placed in hippocampal CA1. The pericranial temperature was maintained at 31 degrees C, 33 degrees C, 35 degrees C, or 37 degrees C (n = 6 per group). Bilateral carotid occlusion with systemic hypotension was initiated for 10 min. The time to onset of the DC shift was recorded. In a second experiment, rats were assigned to 37 degrees C or 31 degrees C for 10 min of ischemia, or to 31 degrees C for 14 min of ischemia (n = 8 per group). These durations of ischemia were defined to allow 9 min of ischemic depolarization in the 37 degrees C-10 min and 31 degrees C-14 min groups. Neurologic and histologic outcomes were examined 7 days later. RESULTS: Hippocampal CA1 time to depolarization increased with decreasing temperature (P < 0.0001). Time to depolarization was increased by approximately 4 min in the rats maintained at 31 degrees C compared with those at 37 degrees C. Time to repolarization during reperfusion was not affected by temperature. Increasing the duration of ischemia from 10 min to 14 min with the pericranial temperature maintained at 31 degrees C resulted in a duration of depolarization that was equivalent in the 37 degrees C-10 min and 31 degrees C-14 min groups. However, hippocampal CA1 damage was not increased (31 degrees C-10 min = 4 +/- 1% dead neurons; 31 degrees C-14 min = 6 +/- 1% dead neurons, 95% CI, -1% to 3%; 37 degrees C-10 min = 90 +/- 17% dead neurons). CONCLUSIONS: Despite similar durations of DC depolarization, outcome in hypothermic rats was markedly improved compared with normothermic rats. This indicates that hypothermic neuroprotection can be attributed to mechanisms other than the delay in time to onset of ischemic depolarization.  相似文献   

7.
Endotoxin activates white blood cells and complement and produces a spectrum of clinical syndromes ranging from fever to septic shock. Although production of endogenous endotoxemia during cardiopulmonary bypass (CPB) has recently been reported, the role of hypothermia on endotoxemia is not clear. In this study, we evaluated the effects of moderate (24-28 degrees C) and mild (32-34 degrees C) hypothermia on blood endotoxin levels. The study population consisted of 20 patients who underwent coronary artery bypass grafting (CABG) with CPB. Moderate systemic hypothermia was applied during aortic cross-clamping in ten patients (group 1) and mild hypothermia in the remaining ten patients (group 2). The mean rectal temperatures were 26.8 +/- 1.2 degrees C in group 1 and 33.8 +/- 0.8 degrees C in group 2. The blood samples for endotoxin level measurements were obtained before CPB, during aortic cross-clamping, immediately after the release of the cross-clamp, 20 minutes after the release of the cross-clamp, after CPB, and 2 hours postoperatively. There were no endotoxins in any of the samples before CPB, but it was detected after CPB in both groups. The endotoxin levels were significantly higher in group 1 than in group 2. The present study suggests that when hypothermia is the technique of choice, the deleterious effects of endotoxemia on patients with comorbidity must be considered.  相似文献   

8.
BACKGROUND: Neurologic complications, primarily resulting from ischemic insults, represent the leading cause of morbidity and disability, and the second most common source of death, after cardiac operations. Previous studies have reported that increases (as occur during the rewarming phase of cardiopulmonary bypass [CPB]) or decreases in brain temperature of a mere 0.5 degrees to 2 degrees C can significantly worsen or improve, respectively, postischemic neurologic outcome. The purpose of the present study was to evaluate a novel approach of selectively cooling the brain during hypothermic CPB and subsequent rewarming. METHODS: Sixteen dogs were anesthetized with either intravenous pentobarbital or inhaled halothane (n = 8 per group). Normocapnia (alpha stat technique) and a blood pressure near 75 mm Hg were maintained. Temperatures were monitored by placing thermistors in the esophagus (i.e., core), parietal epidural space, and brain parenchyma at depths of 1 and 2 cm beneath the dura. During CPB, core temperature was actively cycled from 38 degrees C to 28 degrees C, and then returned to 38 degrees C. Forced air pericranial cooling (air temperature of approximately 13 degrees C) was initiated simultaneous with the onset of CPB, and maintained throughout the bypass period. Brain-to-core temperature gradients were calculated by subtracting the core temperature from regional brain temperatures. RESULTS: In halothane-anesthetized dogs, brain temperatures at all monitoring sites were significantly less than core during all phases of CPB, with one exception (2 cm during systemic cooling). Brain cooling was most prominent during and after systemic rewarming. For example, during systemic rewarming, average temperatures in the parietal epidural space, and 1 and 2 cm beneath the dura, were 3.3 degrees +/- 1.3 degrees C (mean +/- standard deviation), 3.2+/-1.4 degrees C, and 1.6 degrees +/-1.0 degrees C, cooler than the core, respectively. Similar trends, but of a greater magnitude, were noted in pentobarbital-anesthetized dogs. For example, during systemic rewarming, corresponding brain temperatures were 6.5 degrees +/-1.7 degrees C, 6.3 degrees +/-1.6 degrees C, and 4.2+/-1.3 degrees C cooler than the core, respectively. CONCLUSIONS: The magnitude of selective brain cooling observed in both study groups typically exceeded the 0.5 degrees to 2.0 degrees C change previously reported to modulate ischemic injury, and was most prominent during the latter phases of CPB. When compared with previous research from our laboratory, application of cold forced air to the cranial surface resulted in brain temperatures that were cooler than those observed during hypothermic CPB without pericranial cooling. On the basis of the assumption that similar beneficial brain temperature changes can be induced in humans, we speculate that selective convective brain cooling may enable clinicians to improve neurologic outcome after hypothermic CPB.  相似文献   

9.
OBJECTIVE: To study the changes of excitatory amino acid (EAA) in patients with cerebral ischemia. METHODS: We observed dynamic changes of EAA in extracellular fluid by intracerebral microdialysis inserted in hippocampus through stereotaxic method with modified Pulsinelli's model of four vessels occlusion. RESULTS: The concentration of Glu was 5.88 +/- 1.40 and 11.2 +/- 1.5 micromol/L in patients with incomplete cerebral ischemia after 30 minutes and 60 minutes, and the concentration of Asp was 2.72 +/- 0.24 and 4.4 +/- 0.6 micromol/L. The concentration of Glu was 15.1 +/- 1.6 micromol/L and 17.9 +/- 1.6 micromol/L in patients with complete cerebral ischemia after 30 minutes and 60 minutes, and the concentration of Asp was 8.2 +/- 1.0 and 12.1 +/- 1.1 micromol/L. The concentration of Glu and Asp was 1.75 +/- 0.88 micromol/L and 0.24 +/- 0.09 micromol/L in the controls. CONCLUSIONS: In this study, the concentration of Glu and Asp in patients with cerebral ischemia was significantly increased than in the controls, and the more serious ischemia was, the more release of EAA. It is suggested that Dansen injection can reduce the release of EAA by cerebral cells in case of ischemia.  相似文献   

10.
The effect of posttraumatic hypothermia (brain temperature controlled at 32 degrees C for 4 h) on mortality after severe controlled cortical impact (CCI) was studied in rats. Four posttraumatic brain temperatures were compared: 37 degrees C (n = 10), 36 degrees C (n = 4), 32 degrees C (n = 10), and uncontrolled (UC; n = 6). Rats were anesthetized and subjected to severe CCI (4.0-m/s velocity, 3.0-mm depth) to the exposed left parietal cortex. At 10 min posttrauma the rats were cooled or maintained at their target brain temperature, using external cooling or warming. Brain temperature in the UC group was recorded but not regulated, and rectal temperature was maintained at 37 +/- 0.5 degrees C. After 4 h, rats were rewarmed over a 1-h period to 37 degrees C, extubated, and observed for 24 h. In the 37 and 36 degree C groups, 24-h mortality was 50% (37 degrees C = 5/10, 36 degrees C = 2/4). In the 32 degree C group, 24-h mortality was 10% (1/10). In the UC group, brain temperature was 35.4 +/- 0.6 degrees C during the 4-h treatment period and 24-h mortality was 0% (0/6). Mortality was higher in groups with brain temperatures > or = 36 degrees C versus those with brain temperatures < 36 degrees C (50 vs. 6%, respectively; p < 0.05). Additionally, electroencephalograms (EEG) were recorded in subsets of each temperature group and the percentage of time that the EEG was suppressed (isoelectric) was determined. Percentage of EEG suppression was greater in the hypothermic (32 degrees C, n = 6; UC, n = 4) groups than in the normothermic (36 degrees C, n = 3; 37 degrees C, n = 6) groups (23.3 +/- 14.3 vs. 1.2 +/- 3.1%, respectively; p < 0.05). Posttraumatic hypothermia suppressed EEG during treatment and reduced mortality after severe CCI. The threshold for this protective effect appears to be a brain temperature < 36 degrees C. Thus, even mild hypothermia may be beneficial after severe brain trauma.  相似文献   

11.
To verify the optimal hematocrit (Hct) level in the treatment of cerebral ischemia, cerebral oxygen transport (CTO2) and cerebral oxygen metabolism (CMRO2) in graded isovolemic hemodilution were evaluated during cerebral ischemia. Isovolemic hemodilution with low molecular weight dextran to stepwise lower Hct from 43% to 36%, 31%, and 26% was carried out in 13 splenectomized dogs, 6 h after global cerebral ischemia. Global ischemia of the animals was produced by multiple intra- and extracranial ligations of cerebral arteries. Cerebral blood flow (CBF) was measured with radioisotope labeled microspheres. CTO2, CMRO2, and oxygen extraction fraction (OEF) were calculated from CBF, arterial oxygen content (CaO2), and venous oxygen content (CvO2). In dogs with global cerebral ischemia, CBF increased with graded isovolemic hemodilution (r=-0.73, P<0.05). CTO2 reached its highest value at a Hct level of 31.3%. CTO2 at Hct of 36.1% and 31.3% was statistically different from the value measured at a Hct of 43.3%, and there was a decrease when Hct was lowered to 25.9%. CMRO2 was the highest when Hct was at 31.3% and differed significantly from the value measured at a Hct of 43.3%. There was a 10% increase of OEF when Hct was at 25.9%; however this change was not statistically significant compared with the OEF at Hct of 36.1% and 31.3%, respectively. These findings indicate that CTO2 and CMRO2 were the highest when Hct was reduced to 31% in hemodilution. Hct at 31% is the optimum for cerebral metabolism in ischemic status. Uncoupling of CTO2, CMRO2 with CaO2 was also observed in this study. This phenomenon suggests that hemodilution to augment cerebral circulation may be at least partially attributed to the beneficial effects of hemorheologic improvement in the microcirculation of the ischemic brain.  相似文献   

12.
BACKGROUND AND PURPOSE: It is unknown whether a combination of vasopressin and epinephrine may be superior to vasopressin alone by targeting both nonadrenergic and adrenergic receptors. METHODS: After 15 minutes of cardiac arrest (13 minutes of ventricular fibrillation and 2 minutes of pulseless electrical activity) and 3 minutes of chest compressions, 16 animals were randomly treated with either 0.8 U/kg vasopressin (n = 8) or 0.8 U/kg vasopressin combined with 200 microg/kg epinephrine (n = 8). RESULTS: Comparison of vasopressin with vasopressin and epinephrine at 90 seconds and 5 minutes after drug administration resulted in comparable mean (+/-SEM) coronary perfusion pressure (54+/-3 versus 57+/-5 and 36+/-4 versus 35+/-4 mm Hg, respectively), cerebral perfusion pressure (59+/-6 versus 65+/-8 and 40+/-6 versus 39+/-6 mm Hg, respectively), and median (25th to 75th percentiles) left ventricular myocardial blood flow [116 (81 to 143) versus 108 (97 to 125) and 44 (35 to 81) versus 62 (42 to 74) mL x min(-1) x 100 g(-1), respectively], but significantly increased (P<0.05) total cerebral blood flow [81 (77 to 95) versus 39 (34 to 58) and 50 (43 to 52) versus 28 (16 to 35) mL x min(-1) x 100 g(-1), respectively]. Return of spontaneous circulation rates in both groups were comparable (vasopressin, 7 of 8; vasopressin and epinephrine, 6 of 8). CONCLUSIONS: Comparison of vasopressin with vasopressin and epinephrine resulted in comparable left ventricular myocardial blood flow but significantly increased cerebral perfusion.  相似文献   

13.
BACKGROUND: Neurocognitive deficits after open heart operations have been correlated to jugular venous oxygen desaturation on rewarming from hypothermic cardiopulmonary bypass (CPB). Using a porcine model, we looked for evidence of cerebral hypoxia by magnetic resonance imaging during CPB. Brain oxygenation was assessed by T2*-weighted imaging, based on the blood oxygenation level-dependent effect (decreased T2*-weighted signal intensity with increased tissue concentrations of deoxyhemoglobin). METHODS: Pigs were placed on normothermic CPB, then cooled to 28 degrees C for 2 hours of hypothermic CPB, then rewarmed to baseline temperature. T2*-weighted, imaging was undertaken before CPB, during normothermic CPB, at 30-minute intervals during hypothermic CPB, after rewarming, and then 15 minutes after death. Imaging was with a Bruker 7.0 Tesla, 40-cm bore magnetic resonance scanner with actively shielded gradient coils. Regions of interest from the magnetic resonance images were analyzed to identify parenchymal hypoxia and correlated with jugular venous oxygen saturation. Post-hoc fuzzy clustering analysis was used to examine spatially distributed regions of interest whose pixels followed similar time courses. Attention was paid to pixels showing decreased T2* signal intensity over time. RESULTS: T2* signal intensity decreased with rewarming and in five of seven experiments correlated with the decrease in jugular venous oxygen saturation. T2* imaging with fuzzy clustering analysis revealed two diffusely distributed pixel groups during CPB. One large group of pixels (50% +/- 13% of total pixel count) showed increased T2* signal intensity (well-oxygenated tissue) during hypothermia, with decreased intensity on rewarming. Changes in a second group of pixels (34% +/- 8% of total pixel count) showed a progressive decrease in T2* signal intensity, independent of temperature, suggestive of increased brain hypoxia during CPB. CONCLUSIONS: Decreased T2* signal intensity in a diffuse spatial distribution indicates that a large proportion of cerebral parenchyma is hypoxic (evidenced by an increased proportion of tissue deoxyhemoglobin) during CPB in this porcine model. Neuronal damage secondary to parenchymal hypoxia may explain the postoperative neuropsychological dysfunction after cardiac operations.  相似文献   

14.
BACKGROUND: Myocardial ischemia increases tissue electrical resistivity leading to cell-to-cell uncoupling, and this effect is delayed by ischemic preconditioning in isolated myocardium. Alterations in myocardial resistivity elicited by ischemia in vivo may influence arrhythmogenesis and local ST-segment changes, but this is not well known. METHODS AND RESULTS: Myocardial impedance (resistivity [omega x cm] and phase angle [degrees]), epicardial ST segment, and ventricular arrhythmias were analyzed during 4 hours of coronary artery occlusion in 11 anesthetized open-chest pigs; these were compared with 13 other pigs submitted to a similar coronary occlusion preceded by ischemic preconditioning. Myocardial resistivity rose slowly during the first 34+/-7 minutes of occlusion (237+/-41 to 359+/-59 omega x cm), increased rapidly to 488+/-100 omega x cm at 60 minutes, and reached a plateau value (718+/-266 omega x cm, ANOVA; P<.01) at 150+/-69 minutes. By contrast, phase-angle changes began after 17 minutes of ischemia (-3.0+/-1.6 degrees to -4.2+/-1.2 degrees at 29+/-8 minutes) and evolved faster thereafter (-12.5+/-5.3 degrees at 144+/-56 minutes). Marked changes in myocardial impedance were observed during the reversion of ST-segment elevation that occurred 1 to 4 hours after occlusion, but impedance changes were less apparent during the early ST-segment recovery seen at 15 to 35 minutes of ischemia. The second arrhythmia peak (30+/-5 minutes) coincided with the fast change in tissue impedance, and both were delayed (P<.05) by ischemic preconditioning. CONCLUSIONS: A rapid impairment of myocardial impedance occurs after 30 minutes of coronary occlusion, and its onset is better defined by shift in phase angle than by rise in tissue resistivity. Phase 1b arrhythmias are associated with marked impedance changes, and both are delayed by preconditioning. Reversion of ST-segment elevation is partially associated with impairment of myocardial impedance, but other factors play a role as well.  相似文献   

15.
The extent and timing of posttraumatic cerebral hemodynamic disturbances have significant implications for the monitoring and treatment of patients with head injury. This prospective study of cerebral blood flow (CBF) (measured using 133Xe clearance) and transcranial Doppler (TCD) measurements in 125 patients with severe head trauma has defined three distinct hemodynamic phases during the first 2 weeks after injury. The phases are further characterized by measurements of cerebral arteriovenous oxygen difference (AVDO[2]) and cerebral metabolic rate of oxygen (CMRO[2]). Phase I (hypoperfusion phase) occurs on the day of injury (Day 0) and is defined by a low CBF calculated from cerebral clearance curves integrated to 15 minutes (mean CBF 32.3 +/- 2 ml/100 g/minute), normal middle cerebral artery (MCA) velocity (mean V[MCA] 56.7 +/- 2.9 cm/second), normal hemispheric index ([HI], mean HI 1.67 +/- 0.11), and normal AVDO(2) (mean AVDO[2] 5.4 +/- 0.5 vol%). The CMRO, is approximately 50% of normal (mean CMRO(2) 1.77 +/- 0.18 ml/100 g/minute) during this phase and remains depressed during the second and third phases. In Phase II (hyperemia phase, Days 1-3), CBF increases (46.8 +/- 3 ml/100 g/minute), AVDO(2) falls (3.8 +/- 0.1 vol%), V(MCA) rises (86 +/- 3.7 cm/second), and the HI remains less than 3 (2.41 +/- 0.1). In Phase III (vasospasm phase, Days 4-15), there is a fall in CBF (35.7 +/- 3.8 ml/100 g/minute), a further increase in V(MCA) (96.7 +/- 6.3 cm/second), and a pronounced rise in the HI (2.87 +/- 0.22). This is the first study in which CBF, metabolic, and TCD measurements are combined to define the characteristics and time courses of, and to suggest etiological factors for, the distinct cerebral hemodynamic phases that occur after severe craniocerebral trauma. This research is consistent with and builds on the findings of previous investigations and may provide a useful temporal framework for the organization of existing knowledge regarding posttraumatic cerebrovascular and metabolic pathophysiology.  相似文献   

16.
Cell membrane depolarization and tissue acidosis occur rapidly in severely ischemic brain. Preischemic hyperglycemia is recognized to increase ischemic tissue acidosis and the present studies were undertaken to correlate depolarization and tissue acidosis during acute focal cerebral ischemia and hyperglycemia. We used a dual-label autoradiography method to simultaneously measure the in vivo distribution of [3H]nimodipine and [14C]DMO (5,5-dimethyl-2,4-oxazolidinedione) in brain to identify regions of ischemic depolarization and measure regional net tissue pH. Regional cerebral blood flow (CBF) was measured in separate studies. Measurements were made 30 minutes after combined middle cerebral artery and ipsilateral common carotid artery occlusion in normoglycemic and hyperglycemic rats. Tissue pH in the ischemic cortex was depressed to 6.76 +/- 0.11 in normoglycemic rats (n = 12) and 6.57 +/- 0.13 in hyperglycemic rats (n = 12), with significantly greater acidosis in the hyperglycemic group (P < 0.001). In contrast the ratio of [3H]nimodipine uptake in the ischemic cortex relative to the contralateral nonischemic cortex was significantly greater in normoglycemic (1.83 +/- 0.45) than hyperglycemic (1.40 +/- 0.50) rats (P < 0.05). Within this region of ischemic cortex CBF was 31 +/- 22 mL/100 g in normoglycemic rats (n = 8) and 33 +/- 22 mL/100 g/min in hyperglycemic rats (n = 9). Cerebral blood flow did not differ between these two groups in any region. Thus hyperglycemia reduced the extent of ischemic depolarization within the cortex during the first 30 minutes of focal cerebral ischemia. This effect may be related to the increased tissue acidosis or to other factors that may lessen calcium influx and preserve cellular energy stores in the ischemic cortex of the hyperglycemic rats.  相似文献   

17.
Dobutamine atropine stress echocardiography (DASE) detects coronary artery disease (CAD) by increasing myocardial oxygen demand causing ischemia. The sensitivity of the test for detection of CAD is reduced in patients with submaximal stress. We hypothesized that increasing cardiac work load by adding isometric exercise would improve the detection of ischemia during DASE. We studied 31 patients, mean age 57+/-11 years, with angiographically documented CAD. Patients underwent DASE using incremental dobutamine doses from 5 to 40 microg/kg/min, followed by atropine if peak heart rate was <85% of predicted maximal. Hand grip was then performed for 2 minutes at 33% of maximal voluntary contraction, while dobutamine infusion was maintained at the peak dose. The addition of hand grip during dobutamine stress was associated with a significant increase in systolic blood pressure (143+/-21 vs 164+/-24 mm Hg, p = 0.001) and left ventricular end-systolic circumferential wall stress (72+/-30 x 10(3) dynes/cm2 vs 132+/-34 x 10(3) dynes/cm2, p = 0.004). Wall motion score index increased from 1.0 at rest to 1.15+/-0.18 with dobutamine (p = 0.0004 vs rest), and increased further to 1.29+/-0.22 with the addition of hand grip (p = 0.004 vs dobutamine). Ischemia was detected in 19 patients (62%) with dobutamine-atropine stress alone and in 25 (83%) after the addition of hand grip (p <0.05). The addition of hand grip during DASE is feasible, and improves the detection of myocardial ischemia.  相似文献   

18.
Hypothermic cardiopulmonary bypass (CPB) is associated with a high incidence of neuropsychological defects, marked cerebral swelling immediately after surgery and jugular bulb desaturation during rewarming. This suggests cerebral ischaemia may occur, but evidence is indirect. We studied four patients with 31P magnetic resonance spectroscopy (MRS) and four with 1H MRS before and immediately after coronary surgery. There was no visible lactate in 1H MR spectra. In 31P MR spectra, the ratio of phosphocreatine to adenosine triphosphate was maintained (before: 2.13 +/- 0.86 vs after: 2.57 +/- 1.31; mean +/- 1 SD) and there was no intracellular acidosis (intracellular pH: 7.1 +/- 0.04 vs 7.16 +/- 0.08), while phosphocreatine/inorganic phosphate was increased immediately after the operation (2.92 +/- 0.37 vs 6.39 +/- 2.67, p = 0.03). This suggests rebound replacement of energy stores following recovery from temporary cerebral ischaemia during CPB: intra-operative studies would be needed to test this hypothesis further.  相似文献   

19.
The purpose of this study was to prove the hypothesis that ET-1 production is increased in the splanchnic-hepato circulation during cardiopulmonary bypass (CPB) with or without hypothermia and this greatly affects hepatocellular function after surgery. Twelve Japanese white rabbits were used. In group I (n = 6), the rectal temperature was kept at 37.0 degrees C during CPB (90 min). In group II (n = 6), the rectal temperature was lowered to 26 degrees C during the first 30 minutes and then increased to 37 degrees C for the following 60 minutes. In group I, surface liver tissue blood flow (LBF) remained stable during CPB. While, in group II, LBF was significantly reduced to 66.9% of baseline values during hypothermic CPB, but it increased during the rewarming phase to 84.3% of the baseline value (p = 0.0070). At the end of CPB, portal ET-1 levels were increased in both groups, but they were significantly higher in group II (7.32 +/- 0.50 pg/ml and 9.29 +/- 0.61 pg/ml, respectively). Serum GOT, GPT, LDH and arterial ammonia levels were also higher in group II. Portal ET-1 levels had a significant positive correlation with those liver enzymes. Histopathological examination after CPB showed severe damage of the hepatic parenchyma in zone 3 associated with microvesicular fatty infiltration in group II.  相似文献   

20.
Decreases in hepatic blood flow (HBF) have been reported in patients and in animal experiments during cardiopulmonary bypass (CPB). We examined changes in HBF and hepatic oxygen metabolism during CPB in 16 beagles anesthetized with fentanyl. Hepatic arterial blood flow (HABF) and portal venous blood flow (PVBF) were measured by using an electromagnetic flowmeter before and during normothermic and hypothermic CPB with 10 microg x kg(-1) x h(-1) (F-10 group; n = 8) or 50 microg x kg(-1) x h(-1) (F-50 group; n = 8) of fentanyl anesthesia. CPB was conducted with membrane oxygenation and a nonpulsatile pump flow of 2.4 L x m(-2) x min(-1). Hepatic oxygen delivery (HDO2) and consumption (HVO2) were calculated from HBF and oxygen content in arterial, portal venous, and hepatic venous blood. HABF did not change during normothermic CPB in the F-10 group, but it decreased significantly during hypothermic CPB in both groups, especially the F-50 group. During CPB, PVBF and total HBF decreased significantly in both groups-more so with the larger dose of fentanyl--whereas HDO2 decreased significantly because the arterial and portal venous blood oxygen levels decreased. The HVO2 was stable in the F-10 group but was significantly depressed during CPB in the F-50 group. Our results indicate that during hypothermic nonpulsatile CPB larger doses of fentanyl are associated with reduced HBF and impaired HDO2 and HVO2. Implications: Hepatic dysfunction after cardiopulmonary bypass (CPB) has been frequently reported and could be partly attributed to hepatic circulatory disturbance during CPB. We found that, in beagles, large doses of fentanyl were associated with greater decreases in hepatic blood flow and hepatic oxygen metabolism during hypothermic CPB than smaller doses of fentanyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号