首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 658 毫秒
1.
The frictional properties of TiC(100), Ti0.3V0.6C(100), and VC(100) surfaces in contact with a silicon nitride probe tip have been investigated by atomic force microscopy (AFM) under ambient pressures of dry nitrogen as well as environments of different relative humidities. Calibration of normal and lateral force has permitted the determination of the quantitative frictional properties of the three carbide samples on a nanometer length scale. In these studies, TiC(100) exhibits the lowest friction coefficient, ranging from ∼0.044 to ∼0.082 under the different environments. VC(100) and Ti0.3V0.6C(100) have similar friction coefficients (∼0.07) under dry nitrogen conditions, yet VC exhibits a larger friction coefficient (∼0.158) than Ti0.3V0.6C (∼0.129) under conditions of higher relative humidity (∼55%). Condensation of water vapor with increasing relative humidity results in an increase in the frictional response for all the three samples. The experimental results demonstrate that the frictional properties of the three carbide samples are correlated to their surface composition and surface free energy.  相似文献   

2.
This investigation studies the dry sliding wear behavior of magnesium (Mg) matrix composites reinforced with titanium carbide (TiC) and molybdenum disulfide (MoS2) fabricated using a powder metallurgy technique. The effects of both TiC (0–10%) and MoS2 (0–10%) content on the tribological properties are investigated. Wear tests are carried on magnesium reinforced with TiC and MoS2 individually and together in different proportions, using a pin-on-disc apparatus under dry sliding condition. The experiments were made using a Taguchi L27 orthogonal array with five factors at three levels. The wear resistance of the developed composites improved significantly compared to that of the magnesium matrix due to the effect offered by both reinforcements. Analysis of variance was used to verify the significance of factors influencing wear. In addition, the worn surfaces of the wear-tested specimens were examined using a scanning electron microscope coupled with energy-dispersive spectroscopy.  相似文献   

3.
D.J. Barnes  A.E. Lee  D. Tabor 《Wear》1975,31(1):63-76
This paper describes a study of the frictional behaviour of a hard slider traversing the clean surface of molybdenum, tungsten and vanadium carbide crystals in ultra high vacuum. The effect of adding very low pressures of oxygen or hydrogen sulphide was investigated. The surfaces involved were characterized by means of a high energy electron gun incorporated in the system to allow glancing incidence diffraction studies throughout the friction experiments.At all temperatures the coefficient of friction (μ) of molybdenum and tungsten surfaces is isotropic. At high temperatures molybdenum surfaces show frictional behaviour which is heavily dependent on the nature of the slider. Thus with polycrystalline molybdenum sliders the friction rises with temperature but with sapphire sliders it falls. This effect is also seen on tungsten surfaces but is less pronounced.In the presence of an active gas a number of unexpected phenomena are observed. The (110) surface of tungsten gives low values of μ in high pressures of oxygen and at room temperature but the (100) surface does not. At higher temperatures both surfaces of tungsten are protected by oxygen. On molybdenum surfaces hysteresis effects are seen. Thus cooling a (100) molybdenum surface in oxygen from 1000°C leads to a higher friction than that shown while heating. The same effect is seen on both tungsten and molybdenum surfaces in the presence of traces of H2S. This leads to the singular observation that over a range of conditions adding traces of oxygen or hydrogen sulphide causes an increase in μ.On vanadium carbide surfaces the frictional behaviour is typical of a very brittle solid. It is shown that the fall in friction on adding oxygen is due to the chemisorbed oxygen rather than any crystalline oxide formed.  相似文献   

4.
《Wear》1996,193(1):16-24
Wear surfaces of the cutting tools are analyzed to study the wear mechanism of cemented carbide tools in turning in Inconel 718 superalloys. SEM and EPMA analyses indicated that the wear of carbide tools during high speed turning condition (V = 35 m min−1) was caused by diffusion of elements (Ni or Fe) in workpiece into tool's binder (Co) by a grain boundary diffusion mechanism. This action weakened the bonding strength between carbide particles (WC, TiC, TaC) and the binder (Co). The carbide particles were then detached out of the cemented carbide tool by high flow stresses. The proposed grain boundary diffusion mechanism is also confirmed by theoretical analysis.  相似文献   

5.
Radhakrishnan  G.  Adams  P.M.  Robertson  R.  Cole  R. 《Tribology Letters》2000,8(2-3):133-137
Microelectromechanical systems (MEMS) are a key technology for small-scale satellites, integrated sensors, and intelligent control systems. However, a major limitation for Si-based systems involving tribological components is their inability to withstand prolonged sliding surface contact that results in high wear and causes them to fail within minutes of operation. Our aim is to protect the Si surfaces with wear-resistant coatings. Due to practical limitations of coating fully released MEMS structures, we have addressed the integration of the coating into the MEMS processing sequence. This paper describes the direct integration of a pulsed-laser-deposited wear-resistant titanium carbide (TiC) coating into the Si MEMS fabrication process. The in situ deposited TiC layer also provides an ideal substrate to the various possible lubrication schemes proposed for moving MEMS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Engqvist  H.  Axén  N.  Hogmark  S. 《Tribology Letters》1998,4(3-4):251-258
A binderless cemented carbide has been evaluated in abrasion and erosion tests. The binderless carbide was compared with: SiC, Al2O3 and two conventional cemented carbides with 6% Co and different WC grain sizes (1 and 7 μm). In the abrasion tests, the materials were ground with silica, silicon carbide and diamond particles in the size range of 5–15 μm. The erosion tests were performed with 80, 200 and 600 μm silicon carbide erodents. The angle of impingement was 45° and the erodent velocity 70 m/s. In all tests, the conventional cemented carbides showed the highest, the binderless cemented carbide an intermediate and the ceramics the lowest wear resistance. Scanning electron and atomic force microscopy of the abraded surfaces revealed that the binderless cemented carbide was worn by a preferential removal of TiC grains. In erosion, the wear mechanism was largely plastic for the cemented carbides, whereas the ceramics were worn by micro-fracture. The SEM analysis also showed an impact scaling effect for the cemented carbides in erosion. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
《Wear》2006,260(7-8):699-704
The microstructure and wear behavior of WC–8TiC–3TaC–8Co cemented carbide and CuZnNi alloy composite strengthening materials have been investigated by means of scanning electron microscopy (SEM), electron dispersion X-ray analysis (EDAX) and wear test. Effect of applied load and sliding distance on the wear behavior of the strengthening materials are also studied in this paper. The results show that the cemented carbide particles are surrounded by the α + β phases in the hardfacing layers. There exists an inter-diffusion zone at the interface of the cemented carbides and Cu-based matrix due to the mutual diffusion of elements. The wear volume of both the WC–8TiC–3TaC–8Co/CuZnNi and WC–8Co/CuZnNi composite strengthening layers increased with the increasing of applied load. The WC–8TiC–3TaC–8Co/CuZnNi hardfacing layers exhibited lower wear volume loss than that of WC–8Co/CuZnNi. According to the results of engineering application, the working efficiency and employing life of the milling shoes, which were strengthened by WC–8TiC–3TaC–8Co/CuZnNi composite materials, is by approximately two to three times the milling tools strengthened by WC–8Co/CuZnNi.  相似文献   

8.
《Wear》2006,260(1-2):10-15
The microstructure and wear behavior of WC–8TiC–3TaC–8Co cemented carbide and Cu–Zn–Ni alloy composite strengthening materials have been investigated by means of scanning electron microscopy (SEM), electron dispersion X-ray analysis (EDAX) and wear test. Effect of applied load and sliding distance on the wear behavior of the strengthening materials are also studied in this paper. The results show that the cemented carbide particles are surrounded by the α-Cu + β-Zn phases in the hardfacing layers. There exists an inter-diffusion zone at the interface of the cemented carbides and Cu-based matrix due to the mutual diffusion of elements. The wear volume of both the WC–8TiC–3TaC–8Co/CuZnNi and WC–8Co/CuZnNi composite strengthening layers increased with the increasing of applied load. The WC–8TiC–3TaC–8Co/CuZnNi hardfacing layers exhibited lower wear volume loss than that of WC–8Co/CuZnNi. According to the results of engineering application, the working efficiency and employing life of the milling shoes, which were strengthened by WC–8TiC–3TaC–8Co/CuZnNi composite materials, is by approximately two to three times the milling tools strengthened by WC–8Co/CuZnNi.  相似文献   

9.
本文对Al2O3/TiC陶瓷刀具材料切削加工G4335V高强钢时的切削性能和耐磨性进行了试验研究。结果表明:在低速切削条件下,Al2O3/TiC陶瓷刀具和硬质合金刀具(YT15)的抗后面磨损能力相差不大,而在高速切削条件下,前者的抗后面磨损能力远高于后者。Al2O3/TiC陶瓷刀具前面的磨损形式主要为粘结磨损,后面的磨损形式主要为磨粒磨损。  相似文献   

10.
Tribological experiments on phenol–formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a steady-state value is reached. Although the steady-state values of the coefficient of friction are very close and ultralow, the wear rate of the PTFE composite liner at a long sliding distance (1,000 m) is reduced when the steel ball is coated with the TiC/a-C:H coating. This behavior is mainly attributed to the smoother surface after long sliding and the improved wear resistance of TiC/a-C:H coating. PTFE transfer films are evident on the surfaces of the hard counterparts. The average thickness of the transfer film on TiC/a-C:H-coated surfaces is about 3.8 nm. On the surface of uncoated steel ball, a continuous but non-uniform transfer film of around 13.9 nm average thickness was found.  相似文献   

11.
This study presents an assessment of the performance of four cutting tool in the machining of medium hardened HSS: polycrystalline c-BN (c-BN+TiN), TiN coated polycrystalline c-BN (c-BN+TiN), ceramic mixed alumina (Al2O3+TiC), and coated tungsten carbide (TiN coated over a multilayer coating (TiC/TiCN/Al2O3)). The Al2O3+TiC and the coated carbide tools can outperform both types of c-BN at high cutting speeds. Raman and SEM mapping revealed an alumina tribo-layer that protects the surface of the Al2O3+TiC cutting tool. The high chemical and thermal stability of Al2O3 tribo-films protects the tool substrate because it prevents the heat generated at the tool/chip interface from entering the tool core.  相似文献   

12.
《Wear》1996,193(1):31-37
Friction behaviours of sintered high speed steels containing TiC, CaF2 and MnS additives and lubrication mechanisms of these additives have been investigated at sliding conditions at 600°C. Results shown that these additives strongly affected friction behaviours of the sintered high speed steels. Ceramic carbide TiC, as a bonding agent and enhancement phase, bonded the solid lubricant CaF2 and MnS surrounding it and supported these solid lubricant particles so that friction process become stable. Fluoride calcium CaF2 has a better high temperature lubrication properties than MnS, and that the addition of TiC + CaF2 in the sintered high speed steels achieved excellent friction performances both a stable and a low friction coefficient value. Analysis results by X-ray indicated that the surface film appearing on worn path consists of some molten metal matters and very fine carbide particles. During sliding, the surface film separated contacts and resulted in a lower friction coefficient. Because of the sintered high speed steels usually to be used to manufacture high temperature components, these results are helpful for their engineering use.  相似文献   

13.
Abstract

WC–Co cemented carbides, including small angular tungsten carbides particles, are used extensively to improve wear resistance. Some additives can affect mechanical and wear properties of these materials. In this study, the effect of VC and (Ta, Nb)C content on wear of WC–10Co were considered. The tests were performed at normal load of 230 N and sliding distance of 800 m up to 3200 m. Wear tests were carried out using dry sand/rubber wheel apparatus. Wear rate, standard and modified wear coefficients were calculated. The microstructures of prepared specimens were examined by optical microscopy. The morphological analysis of the worn surfaces was made by SEM. The results show that VC content has more effect than (Ta, Nb)C content on wear behaviour. Wear mechanism is different in the specimens, but removal of cobalt rich phase and fracture of carbide grains is clear in all of specimens. Abrasive wear is prevailing in all specimens.  相似文献   

14.
0INTRODUCTIONhadcoatingsPlayani~troleininduStryforilnpwhngtoollifetimeandperfo~e.OneOfthe~tacandstudiedCOatingtodateisTiN,archhasboeficialPropertiesincludinghigh~ss,lowfrictionandchewhcalinertnes,[l].TiCN,incontraSttoTiN,hasbetteranti-abusiveandanti-abusivecapabilityly].BesideSfrictioncoefficients,aweax-resistantcoatingInUSthashighmicro~,hightoughneSsandadheresatisfaCtorilytotheunderlyingsuhahate.ac,theuseOfanlute~atelayertoimproVetheadheSion~theedingandthesubstratehashostudiedlsj…  相似文献   

15.
Certain diamond-like carbon (DLC) coatings offer excellent tribological properties under both dry and oil-lubricated sliding conditions. However, the underlying mechanisms under lubricated conditions are generally not fully understood, especially when performance depends on strong tribochemical interactions with lubricant additives. The aim of the present work is to explore the friction and wear performance of steel and tungsten carbide (WC)-doped DLC (WC-DLC) surfaces in the presence of different types of extreme pressure (EP) and nitrogen–sulfur-based (NS) additives. Tribological tests were performed on a ball-on-disc test rig, and X-ray photoelectron spectroscopy (XPS) was used for physical and chemical characterization of the tribofilms. It was observed that EP and NS additives significantly reduced the wear of WC-DLC surfaces in comparison with tests conducted on steel surfaces. XPS indicated that the additive interactions on the WC-DLC surface formed a distinctive tribofilm that promoted better friction and wear performance. The higher concentration of carbon compounds and lower concentration of oxygen compounds in the tribofilm significantly improved friction and wear characteristics.  相似文献   

16.
The aim of this study was to investigate the possibility to replace cemented carbide wire drawing dies with CVD or PVD coated steel dies. Material pick-up tendency, friction and wear characteristics of four different commercial coatings – CVD TiC and PVD (Ti,Al)N, CrN and CrC/C – in sliding contact with ASTM 52100 bearing steel were evaluated using pin-on-disc testing. The load bearing capacity of the coating/substrate composites was evaluated using scratch testing. The results show that the friction characteristics and material pick-up tendency of the coatings to a large extent is controlled by the surface topography of the as-deposited coatings which should be improved by a polishing post-treatment in order to obtain a smooth surface. Based on the results obtained in this study, three different coatings – CrC/C, TiC and dual-layer TiC/CrC/C – are recommended to be evaluated in wire drawing field tests. CrC/C and TiC are recommended due to their intrinsic low friction properties and material pick-up tendency in sliding contact with steel. The dual-layer is recommended in order to combine the good properties of the two coatings CrC/C (low shear strength) and TiC (high hardness).  相似文献   

17.
The effects of work material on tool wear   总被引:1,自引:0,他引:1  
C. Y. H. Lim  P. P. T. Lau  S. C. Lim 《Wear》2001,250(1-12):344-348
Wear maps showing the wear behaviour of titanium carbide (TiC)-coated cemented carbide tools during dry turning of various types of steel have been presented in earlier studies. The maps have demonstrated that tool wear rates vary with cutting speeds and feed rates used. They have also shown that there is a range of cutting conditions, called the safety zone, within which tool wear rates are the lowest. This paper further examines, using the wear mapping methodology, the effects of different grades of steel workpieces on the wear of TiC-coated carbide tools. Wear maps constructed for the machining of AISI 1045 and 4340 steels show that flank wear is generally more severe when machining the AISI 4340 grade, especially at high cutting speeds and feed rates. Nevertheless, the contour and location of the safety zone on the wear maps for both grades of steels correspond to that revealed in previous work on general steel grades.  相似文献   

18.
通过X衍射法对CP3型硬质合金涂覆TiC TiN TiC Al2 O3 四层硬质层的组织结构进行了研究 ,用扫描电镜观察了涂层的断口形貌 ,用划痕法测定了涂层与基体的结合力 ,用三点弯曲法测定了涂覆前、后该硬质合金的抗弯强度 ,并应用Weibull统计方法对该材料的抗弯强度及其分散性进行了分析。研究结果表明 :涂层组织由TiC、TiN和Al2 O3 组成 ,涂层中无发达的柱状晶 ,涂层与基体结合良好 ,涂覆后硬质合金的平均抗弯强度从涂覆前的2 119MPa下降到 15 80MPa ,但其抗弯强度的分散性变化不大  相似文献   

19.
The nanoindentation fracture of multilayer hard coatings, such as TiN, TiN/Ti(C,N)/TiC, TiN/Ti(C,N)/TiC/Ti(C,N)/TiC and TiN/Ti(C,N)/TiC/Ti(C,N)/TiC/Ti(C,N)/TiC coatings, deposited on cemented carbide using a CVD technique are studied. It is found that these coatings have high hardness. Based on the analysis of the energy release in cracking, the fracture toughness of these coatings are calculated. The observations clearly establish a step occurs in the forcedisplacement curves at the onset of coating fracture and a straigh t line segment in the loadpenetration depth squared curves to identify the interfacial failure of coatings. The hardness, fracture toughness and antiwearability of these coatings are clearly compared. The results show that with the layes increasing, the fracture toughness and antiwearability are getting larger.  相似文献   

20.
S.B. Rao  K.V. Kumar  M.C. Shaw 《Wear》1978,49(2):353-357
A series of experiments has been carried out to explain the lower frictional characteristics of carbide tools coated with TiN relative to those coated with TiC. The reason for the higher friction of TiC appears to lie in the tendency for C to diffuse from the TiC coating into the thin layer of steel that transfers to the tool surface, thus strengthening it. No such strengthening mechanism is evident when TiN is the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号