首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Crack closure has been measured for a range of small, self-initiated fatigue cracks using in situ SEM loading. Cracks were grown at positive R ratios in the aluminium alloy 2024-T351 and at nominal ΔK levels that extend substantially below the corresponding long crack threshold. The crack closure stress of the small cracks decreased and the Kcl level increased with increasing crack size until the long crack value near threshold was reached. For cracks of depth larger than about one grain size, a good correlation was obtained between small and long crack growth rate data in terms of ΔKeff  相似文献   

2.
ABSTRACT Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks, near‐threshold growth behavior of large cracks at constant R‐ratio/decreasing ΔK and constant Kmax/decreasing ΔK, respectively, for 9310 steel. The results showed that a pronounced small‐crack effect was not observed even at R = ?1, small cracks initiated by a slip mechanism at strong slip sites. Worst‐case near‐threshold testing results for large cracks under several Kmax values showed that an effect of Kmax on the near‐threshold behavior does not exist in the present investigation. A worst‐case near‐threshold test for a large crack, i.e. constant Kmax/decreasing ΔK test, can give a conservative prediction of growth behavior of naturally initiated small cracks. Using the worst‐case near‐threshold data for a large crack and crack‐tip constraint factor equations defined in the paper, Newman's total fatigue‐life prediction method was improved. The fatigue lives predicted by the improved method were in reasonable agreement with the experiments. A three‐dimensional (3D) weight function method was used to calculate stress‐intensity factors for a surface crack at a notch of the present SENT specimen (with r/w = 1/8) by using a finite‐element reference solution. The results were verified by limited finite‐element solutions, and agreed well with those calculated by Newman's stress‐intensity factor equations when the stress concentration factor of the present specimen was used in the equations.  相似文献   

3.
In this study, the effects of stress ratio, microstructure and fracture surface roughness on the fatigue properties of a two-phase cast stainless steel were investigated. This behaviour was examined by means of the fracture mechanics approach and fractography. The fatigue crack growth rate decreased with decreasing stress ratio. The stress ratio markedly influenced the fatigue crack growth rate as ΔK approached the ΔKth value. The roughness of the fracture surface was greater in the as-cast material than in the heat-treated material. Analysis of the crack growth data using ΔKeff showed that the effect of R ratio could be explained but that the effect of microstructure on crack growth rate could not.  相似文献   

4.
The fatigue crack growth behaviour of short corner cracks in the Aluminium alloy Al 6013-T6 was investigated. The aim was to determine the crack growth rates of small corner cracks at a stress ratio of R = 0.1, R = 0.7 and R = 0.8 and to find a possible way to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T) – specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The precracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a focussed ion beam. The results of the fatigue crack growth tests with short corner cracks were compared with the long fatigue crack growth test data. The short cracks grew at ΔK-values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK-values and the same stress ratios. A model was created on the basis of constant Kmax-tests with long cracks that gives a good and conservative estimation of the short crack growth rates.  相似文献   

5.
The relationship between microstructure and the fatigue behaviour of small cracks has been examined for the aluminium–lithium alloys 8090 and 8091 after peak ageing at 170°C. Duplex ageing and pre-stretching were used to vary the distribution of S'precipitates and thus the distribution of slip. No effect of S'distribution an small crack growth was observed in either alloy. This is thought to be due to a combination of the lack of closure and lower overall slip reversibility in small cracks. Small cracks in 8091 were found to grow slower than in 8090 due to differences in grain shape rather than texture. Small cracks in both alloys were observed to grow much faster than long cracks for equivalent ΔKs. This difference was reduced when small crack data were compared with long crack data generated at R= 0.7 due to the reduced closure. The use of ΔJ made long and small crack growth rates still more comparable.  相似文献   

6.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

7.
The effects of cathodic protection potential, corrosion products and stress ratio on corrosion fatigue crack growth rate have been studied on offshore structural steels. These materials were cathodically polarised in seawater and 3% sodium chloride solution at three potentials of -0.8, -1.0 and -1.1 V(SCE). The corrosion fatigue crack growth rate in seawater was greater than that in air and increased with more negative potentials. The maximum acceleration of crack growth rate in seawater was observed at the crack growth plateau which was independent of ΔK. Calcareous deposits precipitated within the cracks resulted in an increase of crack opening level and contributed to a reduction of the corrosion fatigue crack growth rate. Such a corrosion-product-wedging effect could be evaluated by using an effective stress intensity range, ΔKeff. The estimation of corrosion fatigue crack growth rate in terms of ΔKeff clarified the effect of hydrogen embrittlement under a cathodic potential. Thus the processes of cracking in seawater at cathodic potentials resulted from mechanical fatigue and hydrogen embrittlement with calcareous deposits reducing the crack growth rate. All these three mechanisms were mutually competitive.  相似文献   

8.
The fatigue behaviour of small, semi‐elliptical surface cracks in a bearing steel was investigated under cyclic shear‐mode loading in ambient air. Fully reversed torsion was combined with a static axial compressive stress to obtain a stable shear‐mode crack growth in the longitudinal direction of cylindrical specimens. Non‐propagating cracks less than 1 mm in size were obtained (i) by decreasing the stress amplitude in tests using notched specimens and (ii) by using smooth specimens in constant stress amplitude tests. The threshold stress intensity factor ranges, ΔKIIth and ΔKIIIth, were estimated from the shape and dimensions of non‐propagating cracks. Wear on the crack faces was inferred by debris and also by changes in microstructure in the wake of crack tip. These effects resulted in a significant increase in the threshold value. The threshold value decreased with a decrease in crack size. No significant difference was observed between the values of ΔKIIth and ΔKIIIth.  相似文献   

9.
Fatigue-crack-growth (FCG) rate tests were conducted on compact specimens made of an Inconel-718 alloy to study the behavior over a wide range in load ratios (0.1 ? R ? 0.95) and a constant Kmax test condition. Previous research had indicated that high R (>0.7) and constant Kmax test conditions near threshold conditions were suspected to be crack-closure-free and that any differences were attributed to Kmax effects. During a test at a load ratio of 0.7, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local load-strain records during crack growth. In addition, a back-face strain (BFS) gage was also used to monitor crack lengths and to measure crack-opening loads from remote load-strain records during the same test. The BFS gage indicated that the crack was fully open (no crack closure), but the local load-strain records indicated significant amounts of crack closure. The crack-opening loads were increasing as the crack approached threshold conditions at R = 0.7. Based on these measurements, crack-closure-free FCG data (ΔKeff against rate) were calculated. The ΔKeff-rate data fell at lower ΔK values and higher rates than the constant Kmax test results. In addition, constant R tests at extremely high R (0.9 and 0.95) were also performed and compared with the constant Kmax test results. The constant R test results at 0.95 agreed well with the ΔKeff-rate data, while the R = 0.9 data agreed well with constant Kmax test data in the low-rate regime. These results imply that the R = 0.7 test had a significant amount of crack closure as the threshold was approached, while the R = 0.9 and Kmax test results may have had a small amount of crack closure, and may not be closure free, as originally suspected. Under the high load-ratio conditions (R ? 0.7), it is suspected that the crack surfaces are developing debris-induced crack closure from contacting surfaces, which corresponded to darkening of the fatigue surfaces in the near-threshold regime. Tests at low R also showed darkening of the fatigue surfaces only in the near-threshold regime. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R in the threshold regime.  相似文献   

10.
Crack closure of physical short and long cracks of LY12CZ aluminum alloy during fatigue process was investigated using acoustic emission (AE) technique. Results showed that the effective fatigue crack growth curve (da/dN vs. ΔKeff) of physical short and long cracks obtained by the AE technique was consistent with the effective fatigue crack growth curve at high stress ratio (R = 0.8), which implied that the AE technique could measure the crack closure level, especially for physical short crack. The growth rate of physical short crack was much higher than that of long crack at the same ΔK, and the lower crack closure level of short crack was the main reason.  相似文献   

11.
Behaviour of fatigue crack growth and closure through a compressive residual stress field is investigated by performing fatigue crack growth tests on welded SEN specimens of a structural steel (JIS SM50A). Depending on the type of the initial residual stress in the region of crack growth, the growth and closure of the crack show different behaviour. In particular, in the transition region from a compressive residual stress field to a tensile residual stress field, the fatigue crack growth rates cannot be described by the effective stress intensity factor range ΔKeff, based on the measured crack opening stress intensity factor Kop. Also it is found that the R'-method using the data of da/dN vs ΔK for residual stress-free specimens, with the effective stress ratio R'[=(Kmax+Kr)/(Kmin+Kr)], gives non-conservative predictions of the growth rates in the transition region. Observations of crack closure behaviour in this study indicates that partial opening of the crack occurs and this plays an important role in crack growth through a compressive residual stress field. Based on the concept of a partial opening point (defined and measured in this work), fatigue crack growth behaviour can be better explained.  相似文献   

12.
This work assesses the ability of linear elastic fracture mechanics (LEFM) with superposition to correlate the growth of one-dimensional fatigue cracks at cold-expanded open holes under constant amplitude loading. Care is taken in the work to accurately: control the test setup to ensure one-dimensional crack growth, determine residual stress in the coupons, measure crack growth, determine the fatigue crack growth rate (FCGR), compute stress intensity factors, and correlate fatigue crack growth rate with stress intensity factor range ΔK and stress ratio R. The work used long dog-bone coupons having a gage section 38.1 mm wide and a centrally located 7.09 mm diameter hole. The coupons were fabricated from 2.03 mm thick 7075-T6 sheet. The small coupon thickness and alignment of the loading fixture to eliminate bending resulted in one-dimensional crack growth. Residual stress due to cold expansion (CX) was measured using the contour method, as a function of position on the crack plane. Residual stress measurements gave typical results for the average residual stress field, with near-yield compression at the hole giving way to tension further out. Measurements on multiple coupons showed ±10% variability in residual stress. Crack growth behavior of multiple as-machined (AM) coupons (without CX) tested at R of 0.1 or 0.5 agreed with earlier results published in the literature. The scatter in lifetime, defined as the range of lifetime divided by the average lifetime, was less than 30% in the AM coupons. Crack growth behavior of multiple CX coupons tested at the same two applied stress ratios was consistent with predictions by linear superposition, where the predictions used a correlation for fatigue crack growth rate as a function of ΔK and R based on crack closure concepts and a piecewise log–log fit to FCGR versus ΔKeff data from tests of non-residual stress bearing material and from the literature. Scatter in lifetime of CX coupons was 152% at R = 0.1 and 69% at R = 0.5. While the scatter in CX coupon lifetime is considerably greater than for AM coupons, it is found consistent with the observed 10% variability in residual stress. The work therefore demonstrates the ability of LEFM with superposition to accurately correlate the behavior of coupons with and without residual stresses.  相似文献   

13.
14.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

15.
This paper proposes a local stress concept to evaluate the fretting fatigue limit for contact edge cracks. A unique S–N curve based on the local stress could be obtained for a contact edge crack irrespective of mechanical factors such as contact pressure, relative slip, contact length, specimen size and loading type. The analytical background for the local stress concept was studied using FEM analysis. It was shown that the local stress uniquely determined the ΔK change due to crack growth as well as the stress distribution near the contact edge. The condition that determined the fretting fatigue limit was predicted by combining the ΔK change due to crack growth and the ΔKth for a short crack. The formation of a non‐propagating crack at the fatigue limit was predicted by the model and it was experimentally confirmed by a long‐life fretting fatigue test.  相似文献   

16.
Load‐controlled three‐point bending fatigue tests were conducted on API X80 pipeline steel to investigate the effects of stress ratio and specimen orientation on the fatigue crack growth behaviour. Because of the high strength and toughness of X80 steel, crack growth rate was measured and plotted versus ΔJ with stress ratio. The fatigue crack length is longer in the transverse direction, whereas the fatigue crack growth rates are nearly the same in different orientations. Finally, a new fatigue crack growth model was proposed. The effective J‐integral range was modified by ΔJp in order to correlate crack closure effect due to large‐scale yield of crack tip. The model was proved to fit well for fatigue crack growth rate of API X80 at various stress ratios of R > 0.  相似文献   

17.
The fatigue crack growth properties of friction stir welded joints of 2024‐T3 aluminium alloy have been studied under constant load amplitude (increasing‐ΔK), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ΔK values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non‐conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non‐conservative crack growth rate predictions next to KC instability. At threshold ΔK values non‐conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.  相似文献   

18.
Abstract— It is well known that for very short cracks the stress intensity factor K is not a suitable parameter to estimate the stress level over the small but finite Stage II process zone activation region of size rs near the crack tip, within which crack growth events take place. A critical appreciation of the reasons for the limitations on the applicability of ΔK as a fatigue crack propagation (FCP) parameter, when the crack length a is of the same order of magnitude or smaller than the size of the ‘fatigue-fracture activation region’, rs is presented. As an alternative to ΔK the range Δσs of the cyclic normal stress at a point situated at the fixed distance s=rs/2, ahead of the crack tip, inside the fatigue-fracture activation region, is proposed. It is observed that the limitation on the use of ΔK when the crack is short, is mathematical (and not physical) but this inconvenience is easily circumvented if the stress Δσs at the prescribed distance is used instead of ΔK since nowadays Δσs can be obtained numerically by using finite element methods (FEM). It follows that the parameter Δσs is not restricted by the mathematical limitations on ΔK and so it would seem that there is, a priori, no reason why the validity of the parameter Δσs cannot be extended to short cracks. It is shown that if the Paris law is expressed in terms of Δσs (πrrs)½ instead of ΔK the validity of the modified Paris law can be extended to short cracks. A coherent estimate of the value of the fatigue-fracture activation region rs is derived in terms of the fatigue limit ΔσFL obtained from S-N tests and of the threshold value ΔKth obtained from tests on long cracks where both relate to Stage II crack growth that ends in failure, namely, rs= (ΔKth/ΔσFL)2/π. An overall, threshold diagram is presented based on the simple criterion that, for sustained Stage II FCP, Δσs must be greater than ΔσFL. The study is based on a simple continuum mechanics approach and its purpose is the investigation of the suitability of both ΔK and Δσs to characterise the crack driving force that activates complex fracture processes at the microstructure's scale. The investigation pertains to conditions that lead to the ultimate failure of the component at values of Δσs > ΔσFL.  相似文献   

19.
20.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号