首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
3.
In an ongoing survey of the bioactive potential of microorganisms associated with marine invertebrates, the culture media of a sponge-associated bacterial strain of Pseudomonas aeruginosa was found to contain metabolites which inhibit the growth of several Gram-positive microorganisms. A series of diketopiperazines (1-6) including a new natural product (6) and two known phenazine alkaloid antibiotics (7 and 8) were isolated from the culture broth of this bacterium.  相似文献   

4.
Heterogeneity of the lipopolysaccharide from Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Lipopolysaccharide isolated from pseudomonas aeruginosa PAC1 and its phage-resistant mutant was degraded by mild acid hydrolysis into lipid A and three major polysaccharide-containing fractions which were separated on Sephadex G-75. The low-molecular-weight fraction contained glucose, rhamnose, heptose, galactosamine, alanine and phosphate. The higher-molecular-weight fractions consisted mainly of glucose, rhamnose and glucosamine together with amino compounds. Alkaline degradation of the lipopolysaccharide produced at least four different species each of which contained a low-molecular-weight polysaccharide similar if not identical to that produced by acid hydrolysis. Under certain growth conditions an abnormal lipopolysaccharide was produced which was defective in the low-molecular-weight polysaccharide and contained mainly high-molecular-weight material. Strains of different serotype yielded lipopolysaccharides which also exhibited heterogeneity but contained a low-molecular-weight polysaccharide similar to that obtained from strain PAC1 and PAC1R. It is suggested that each strain of P. aeruginosa may produce several lipopolysaccharides each containing a polysaccharide common to all. The relative proportions of the various lipopolysaccharides may be changed by growth conditions.  相似文献   

5.
Inactivation of the human DNA repair protein, O6-alkylguanine-DNA alkyltransferase (AGT), by O6-benzylguanine renders tumor cells susceptible to killing by alkylating agents. AGT mutants resistant to O6-benzylguanine can be made by converting Pro140 to an alanine (P140A) or Gly156 to an alanine (G156A). These mutations had a much smaller effect on the reaction with O6-benzylguanine when it was incorporated into a short single-stranded oligodeoxyribonucleotide. Such oligodeoxyribonucleotides could form the basis for the design of improved AGT inhibitors. AGT and mutants P140A and G156A preferentially reacted with O6-benzylguanine when incubated with a mixture of two 16-mer oligodeoxyribonucleotides, one containing O6-benzylguanine and the other, O6-methylguanine. When the 6 amino acids located in positions 159-164 in AGT were replaced by the equivalent sequence from the Escherichia coli Ada-C protein (mutant AGT/6ada) the preference for benzyl repair was eliminated. Further mutation incorporating the P140A change into AGT/6ada giving mutant P140A/6ada led to a protein that resembled Ada-C in preference for the repair of methyl groups, but P140A/6ada did not differ from P140A in reaction with the free base O6-benzylguanine. Changes in the AGT active site pocket can therefore affect the preference for repair of O6-benzyl or -methyl groups when present in an oligodeoxyribonucleotide without altering the reaction with free O6-benzylguanine.  相似文献   

6.
The O antigen of the Pseudomonas aeruginosa lipopolysaccharide is the optimal target for protective antibodies, but the unusual and complex nature of their sugar substituents has made it difficult to define the range of these structures needed in an effective vaccine. Most clinical isolates of P. aeruginosa can be classified into 10 O-antigen serogroups, but slight chemical differences among O polysaccharides within a serogroup give rise to subtype epitopes. These epitopes could impact the reactivity of O-antigen-specific antibodies, as well as the susceptibility of a target strain to protective, opsonic antibodies. To define parameters of serogroup and subtype-epitope immunogenicity, antigenicity, and surface expression on P. aeruginosa cells, we prepared high-molecular-weight O-polysaccharide vaccines from strains of P. aeruginosa serogroup O2, for which eight structurally variant O antigens expressing six defined subtype epitopes (O2a to O2f) have been identified. A complex pattern of immune responses to these antigens was observed following vaccination of mice. The high-molecular-weight O polysaccharides were generally more immunogenic at low doses (1 and 10 microg) than at a high dose (50 microg) and usually elicited antibodies that opsonized the homologous strain for phagocytic killing. Some of the individual polysaccharides elicited cross-opsonic antibodies to a variable number of strains that express all of the defined serogroup O2 subtype epitopes. Combination into one vaccine of two antigens that individually elicited cross-reactive opsonic antibodies to most members of the O2 serogroup inhibited, instead of enhanced, the production of antibodies broadly reactive with most serogroup O2 subtype strains. Thus, immune responses to P. aeruginosa O antigens may be restricted to a limited range of epitopes on structurally complex O antigens, and combining multiple related antigens into a single vaccine formulation may inhibit the production of those antibodies best able to protect against most P. aeruginosa strains within a given O-antigen serogroup.  相似文献   

7.
Treatment of a protected 9-(5, 6-dideoxy-beta-D-ribo-hex-5-ynofuranosyl)adenine derivative with silver nitrate and N-iodosuccinimide (NIS) and deprotection gave the 6'-iodo acetylenic nucleoside analogue 3c. Halogenation of 3-O-benzoyl-5,6-dideoxy-1, 2-O-isopropylidene-alpha-D-ribo-hex-5-enofuranose gave 6-halo acetylenic sugars that were converted to anomeric 1,2-di-O-acetyl derivatives and coupled with 6-N-benzoyladenine. These intermediates were deprotected to give the 6'-chloro 3a, 6'-bromo 3b, and 6'-iodo 3c acetylenic nucleoside analogues. Iodo compound 3c appears to inactivate S-adenosyl-L-homocysteine hydrolase by a type I ("cofactor depletion") mechanism since complete reduction of enzyme-bound NAD+ to NADH was observed and no release of adenine or iodide ion was detected. In contrast, incubation of the enzyme with the chloro 3a or bromo 3b analogues resulted in release of Cl- or Br- and Ade, as well as partial reduction of E-NAD+ to E-NADH. Compounds 3a, 3b, and 3c were inhibitory to replication of vaccinia virus, vesicular stomatitis virus, parainfluenza-3 virus, and reovirus-1 (3a < 3b < 3c, in order of increasing activity). The antiviral effects appear to correlate with type I mechanism-based inhibition of S-adenosyl-L-homocysteine hydrolase. Mechanistic considerations are discussed.  相似文献   

8.
Comparisons of virulence between a Pseudomonas parent strain and an isogenic mutant devoid of protease IV have demonstrated a significant role for this enzyme during infection. We have characterized purified Pseudomonas aeruginosa protease IV in terms of its biochemical and enzymatic properties, and found it to be a unique extracellular protease. The N-terminal decapeptide sequence of protease IV is not homologous with any published protein sequence. Protease IV has a molecular mass of 26 kDa, an isoelectric point of 8.70, and optimum enzymatic activity at pH 10.0 and 45 degreesC. Purified protease IV demonstrates activity for the carboxyl side of lysine-containing peptides and can digest a number of biologically important proteins, including immunoglobulin, complement components, fibrinogen, and plasminogen. Protease IV is not inhibited by thiol-, carboxyl-, or metalloproteinase inhibitors. The total loss of enzyme activity in the presence of N-p-tosyl-L-chloromethyl ketone and the partial inhibition of enzyme activity by diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride imply that protease IV is a serine protease. Inhibition by dithiothreitol and beta-mercaptoethanol suggests that intramolecular disulfide bonds are essential for enzyme activity. The characteristics of this enzyme suggest that inhibitors of serine proteases could be developed into a medication designed to arrest tissue damage during Pseudomonas infection.  相似文献   

9.
10.
We report here a novel type of ceramidase of Pseudomonas aeruginosa AN17 isolated from the skin of a patient with atopic dermatitis. The enzyme was purified 83,400-fold with an overall yield of 21.1% from a culture supernatant of strain AN17. After being stained with a silver staining solution, the purified enzyme showed a single protein band, and its molecular mass was estimated to be 70 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme showed quite wide specificity for various ceramides, i.e. it hydrolyzed ceramides containing C12:0-C18:0 fatty acids and 7-nitrobenz-2-oxa-1, 3-diazole-labeled dodecanoic acid, and not only ceramide containing sphingosine (d18:1) or sphinganine (d18:0) but also phytosphingosine (t18:0) as the long-chain base. However, the enzyme did not hydrolyze galactosylceramide, sulfatide, GM1, or sphingomyelin, and thus was clearly distinguished from a Pseudomonas sphingolipid ceramide N-deacylase (Ito, M., Kurita, T., and Kita, K. (1995) J. Biol. Chem. 270, 24370-24374). This bacterial ceramidase had a pH optimum of 8.0-9.0, an apparent Km of 139 microM, and a Vmax of 5.3 micromol/min/mg using N-palmitoylsphingosine as the substrate. The enzyme appears to require Ca2+ for expression of the activity. Interestingly, the 70-kDa protein catalyzed a reversible reaction in which the N-acyl linkage of ceramide was either cleaved or synthesized. Our study demonstrated that ceramidase is widely distributed from bacteria to mammals.  相似文献   

11.
12.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

13.
The activity of O6-alkylguanine-DNA alkyltransferase (AGT) protects cells from killing by methylating or chloroethylating agents. AGT is strongly inhibited by O6-benzylguanine (ED50, 0.2 microM), and this drug is presently undergoing clinical trials to enhance chemotherapy by alkylating agents. Point mutations such as P140A (ED50, 5 microM) render AGT resistant to O6-benzylguanine (BG). Selection for such mutants may prove to be a problem in the use of BG, and a better knowledge of the factors underlying resistance to BG will enable the rational design of improved inhibitors able to inactivate these mutants. BG-resistant AGT mutants may also be valuable for expression in bone marrow stem cells to reduce myelosuppression brought about by alkylating agents, to increase the therapeutic index of therapies including BG, and for use as a selectable marker to allow other genes to be expressed in such stem cells. We have therefore set up a general screen to obtain such mutants by using the ability of AGT to protect Escherichia coli GWR109 lacking endogenous AGT from killing by N-methyl-N'-nitro-N-nitrosoguanidine. When the cells were rendered permeable to BG by mutating the lipopolysaccharide membrane component forming strain TRG8, the protection by AGT expression was abolished by treating the cells with BG. The known P140A mutant was used to test the system and was highly selected for by treatment with 50 microM BG and 40 microg/ml N-methyl-N'-nitro-N-nitrosoguanidine. The sequence coding for PVP at positions 138-140 in AGT was replaced with a random nucleotide sequence, and this library was used to transform TRG8. All of the 59 colonies analyzed having AGT activity that survived the selection from the pool of 36,000 transformants were resistant to BG. Many (69%) of these mutants contained lysine at position 140, and all of these showed the highest level of resistance with <10% loss of activity when crude cell extracts were incubated with 1.2 mM BG. This result was confirmed with three mutants (P138K/V139L/P140K, P138M/V139L/P140K, and P140K), which were purified to homogeneity. The next most common residues found at position 140 were arginine (7%) and asparagine (7%). Studies carried out with purified preparations of mutants P140R and P140N revealed that these mutations also provided resistance to BG but to a lesser extent than P140K (ED50s of 190 and 7 microM, respectively). These results indicate that: (a) this screening method can be used to evaluate BG resistance of single or multiple changes throughout the AGT sequence; and (b) replacement of proline-140 with lysine is the most effective point mutation at this site causing BG resistance and is more than 200 times more effective than replacement with alanine.  相似文献   

14.
Single crystals of cyclohexadienyl dehydratase from Pseudomonas aeruginosa have been obtained by vapour diffusion from ammonium sulphate solution (pH 6.0) at 4 degrees C. The crystals belong to the tetragonal space group P4(3)2(1)2 or P4(1)2(1)2 with a = b = 105.5 A and c = 165.0 A. The asymmetric unit contains at least one dimeric protein molecule with M(r) = 72 kDa. The crystals diffract to 3 A resolution and are suitable for an X-ray analysis.  相似文献   

15.
Betaine aldehyde dehydrogenase (BADH) (EC 1.2.1.8) catalyzes the last, irreversible step in the synthesis of the osmoprotectant glycine betaine from choline. In Pseudomonas aeruginosa this reaction is also an obligatory step in the assimilation of carbon and nitrogen when bacteria are growing in choline or choline precursors. We present here a method for the rapid purification to homogeneity of this enzyme by the use of ion-exchange and affinity chromatographies on 2',5'-ADP-Sepharose, which results in a high yield of pure enzyme with a specific activity at 30 degreesC and pH 7.4 of 74.5 U/mg of protein. Analytical ultracentrifugation, gel filtration, chemical cross-linking, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggest that BADH from P. aeruginosa is a homodimer with 61-kDa subunits. The amino acid composition and the N-terminal sequence of 21 amino acid residues showed significant similarity with those of the enzymes from Xanthomonas translucens and Escherichia coli. Neither BADH activity nor BADH protein was found in cell extracts from bacteria grown in the absence of choline. In contrast to other BADHs studied to date, the Pseudomonas enzyme cannot use positively charged aldehydes other than betaine aldehyde as substrates. The oxidation reaction has an activation energy of 39.8 kJ mol-1. The pH dependence of the velocity indicated an optimum at pH 8.0 to 8.5 and the existence of two ionizable groups with macroscopic pK values of 7.0 +/- 0.1 and 9. 7 +/- 0.1 involved in catalysis and/or binding of substrates. The enzyme is inactivated at 40 degreesC, but activity is regained when the heated enzyme is cooled to 30 degreesC or lower. At the optimum pH of 8.0, the enzyme is inactivated by dilution, but it is stable at pH 6.5 even at very low concentrations. Also, P. aeruginosa BADH activity is rapidly lost on removal of K+. In all cases studied, inactivation involves a biphasic process, which was dependent on the enzyme concentration only in the case of inactivation by dilution. NADP+ considerably protected the enzyme against these inactivating conditions.  相似文献   

16.
Lipopolysaccharide (LPS) of the Pseudomonas aeruginosa serotype O5 wild-type strain PAO1 and derived rough-type mutant strains AK1401 and AK1012 was isolated by a modified phenol/chloroform/petroleum-ether extraction method. Deoxycholate/PAGE of the LPS from the rough mutant AK1401 indicated two bands near the dye front with mobilities similar to those of the parent strain, indicating that both LPS contain a complete core and a species comprising a core and one repeating unit. Composition analysis of the LPS from strains PAO1 and AK1401 indicated that the complete core oligosaccharide was composed of D-glucose (four units), L-rhamnose (one unit), 2-amino-2-deoxy-D-galactose (one unit), L-glycero-D-manno-heptose (Hep; two units), 3-deoxy-D-manno-octulosonic acid (Kdo; two units), L-alanine (one unit) and phosphate (three units). The glycan structure of the LPS was determined by one-dimensional and two-dimensional (2D) NMR techniques in combination with MS-based methods on oligosaccharide samples obtained from the LPS by delipidation procedures. The locations of three phosphomonoester groups on the first heptose residue were established by a two-dimensional 31P (omega1)-half-filtered COSY experiment on the reduced core oligosaccharide sample of the LPS from the wild-type strain. The presence of a 7-O-carbamoyl substituent was observed on the second heptose. The structure of the core region of the O-chain-deficient LPS from P. aeruginosa serotype 05 is as follows: [structure: see text] where R1 is beta-D-Glcp-(1-->2)-alpha-L-Rhap-(1-->6)-alpha-D-Glcp-(1--> and R2 is alpha-D-Glcp-(1-->6)-beta-D-Glcp-(1->. A structural model is presented that is also representative of that for P. aeruginosa serotype O6 LPS. A revised structure for the serotype O6 mutant strain A28 is presented.  相似文献   

17.
The lpxC (envA) gene of Escherichia coli encodes UDP-3-O-acyl-GlcNAc deacetylase, the second and committed step of lipopolysaccharide biosynthesis. Although present in all gram-negative bacteria examined, the deacetylase from E. coli is the only example of this enzyme that has been expressed and purified. In order to examine other variants of this protein, we cloned the Pseudomonas aeruginosa deacetylase structural gene from a lambda library as a 5.1-kb EcoRI fragment. The LpxC reading frame encodes an inferred protein of 33,435 Da that is highly homologous to the E. coli protein and that possesses a nearly identical hydropathy profile. In order to verify function, we subcloned the P. aeruginosa lpxC gene into the T7-based expression vector pET11a. Upon induction at 30 degrees C, this construct yielded active protein to approximately 18% of the soluble fraction. We devised a novel, rapid, and reproducible assay for the deacetylase which facilitated purification of the enzyme in three steps. The purified recombinant protein was found to be highly sensitive to EDTA yet was reactivated by the addition of excess heavy metal, as was the case for crude extracts of P. aeruginosa. In contrast, deacetylase activity in crude extracts of E. coli was insensitive to EDTA, and the extracts of the envA1 mutant were sensitive in a time-dependent manner. The lpxC gene has no significant homology with amidase signature sequences. Therefore, we assign this protein to the metalloamidase family as a member with a novel structure.  相似文献   

18.
The effect of gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) in cultured prenatal rat cortical neurons was investigated using fluorescence imaging. GABA or muscimol, but not baclofen, increased [Ca2+]i in a dose-dependent manner. The GABAA receptor antagonists, bicuculline and picrotoxin, inhibited the GABA response. Furosemide, an inhibitor of the Na+/K+/2Cl- cotransporter, inhibited the GABA response in a noncompetitive manner. Ethacrynic acid, an inhibitor of an ATP-dependent Cl- pump, also inhibited the GABA-induced increased in [Ca2+]i. These results suggest a role for Cl- transport processes in the GABA response. The coapplication of GABA and high K+ led to a non-additive increase in the GABA response. The GABA response was also inhibited by nifedipine, a voltage-gated Ca2+ channel blocker, and abolished by the absence of extracellular Ca2+. Results indicate that the GABA response shares a common pathway of Ca2+ movement with the high K(+)-induced response. These observations suggest that the stimulation with GABA results in Ca2+ influx through voltage-gated Ca2+ channels, and that these effects are dependent on Cl- transport systems.  相似文献   

19.
Auxotrophic Pseudomonas aeruginosa are exclusive to respiratory infections in cystic fibrosis (CF) and bronchiectatic patients, and isolates require specific amino acids for growth on minimal media, particularly methionine. Since auxotrophic and prototrophic P. aeruginosa from CF are identical by genotyping, we investigated the genetic events leading to methionine auxotrophy (Met-). Most (10/13) Met- strains had the same pattern of growth on methionine precursors and required methionine exclusively for growth. Back mutation to prototrophy was very low (frequencies 10(-8) to <10(-10)). Complementation of the mutations leading to auxotrophy was achieved for five strains with a genomic library of P. aeruginosa PAO1. Strains with different patterns of growth on methionine precursors were complemented by clones with different restriction patterns, while identical clones complemented strains with the same pattern of growth on methionine precursors. Methionine auxotrophy in P. aeruginosa from CF results from stable chromosomal mutations, and the commonest defect is probably in gene(s) encoding enzymes that convert homocysteine to methionine.  相似文献   

20.
Attempts have been made to isolate continuous lines of rare subsets of lymphoid cells present in murine spleen in order to analyse their function and lineage relationship with respect to other lymphoid cells. Mitogenic stimulation was used to expand the lymphoid cells remaining in spleen following depletion of CD4+ and CD8+ T cells by antibody and complement treatment. Cells were cultured in the presence of concanavalin A (Con A), interleukin-2 (IL-2) and syngeneic irradiated spleen feeder cells. This procedure expanded a population of non-T-, non-B-lymphoid cells bearing a common, unique phenotype resembling lymphoid precursors. Eight cloned lines from B10.A(2R) and B10.A(5R) strains of mice have been analysed here. Analysis of cell surface marker expression has revealed positive expression of class I and class II major histocompatibility complex (MHC) antigens, CD44, CD45 (T200 and B220) but expressing no markers unique to T, B or myeloid cells. All cell lines represent agranular lymphoblasts and show no evidence of early T-cell receptor (TcR) or Ig heavy chain gene rearrangements, suggesting no commitment to T-or B-lymphoid lineage. Despite expression of the NK1.1 marker for natural killer (NK) cells, none of the cell lines has been shown to have cytotoxic function for NK targets, nor could cytotoxic function be induced following various activation procedures. Analysis of lymphokine production has revealed no detectable IL-1, IL-2, IL-3, IL-4, IL-5, tumour necrosis factor-alpha (TNF-alpha) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in cell supernatants. However, all but one of these cell lines constitutively produce IL-6. Each cell line has been shown to induce T-cell proliferation independently in mixed lymphocyte reactions, implicating the capacity of these cells to act as antigen-presenting cells. Consistent with this hypothesis is the observation that these cells also demonstrate endocytic activity for foreign proteins. This was visualized by their uptake of fluoresceinated albumin into cytoplasmic granules. Since they express many cell surface markers common to described isolates of spleen dendritic cells, including both class I and class II major histocompatibility molecules, they would appear to represent the first example of continuous lines of this rare cell subset.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号