共查询到20条相似文献,搜索用时 46 毫秒
1.
节点定位是无线传感器网络中最为关键的一项技术。针对无源定位的问题,提出一种到达时间差(TDOA)和到达信号增益比(GROA)联合定位算法,并且采用飞行机制的萤火虫算法(GSO)来求得最终结果。结合TDOA和GROA定位模型,引入辅助变量将方程伪线性化,然后采用修正两步加权最小二乘算法(TSWLS)来进行求解。并且在不影响收敛速度和精度的前提下,采用带有飞行机制的GSO算法来寻求目标定位的最优解,克服粒子群算法易陷入局部最优的缺点。仿真结果表明,该算法相比较TDOA算法而言,定位精度提高了23 dB,并且具有相对较高和较稳定的定位精度。 相似文献
2.
《计算机应用与软件》2016,(2)
基本萤火虫群优化GSO(Glowworm Swarm Optimization)算法在求解函数全局寻优问题时,存在后期收敛速度慢、容易陷入局部极值等问题。为此,提出一种基于混合变异的萤火虫群优化算法。该算法用混沌变异和边界变异来增加种群的多样性,避免算法陷入局部最优,且能使算法获得精度更高的解。运用六个标准测试函数进行测试,结果表明,改进后的萤火虫群优化算法比基本GSO算法具有更高的寻优速度、寻优精度和收敛率。 相似文献
3.
分析了萤火虫算法的进化计算机制,并利用实例对萤火虫算法中容易发生进化过早停滞的原因进行了研究。提出了一种基于新型进化计算模式的改进型萤火虫优化算法,该算法在进化初期利用种群最优萤火虫激发群中其他个体的寻优能力,在萤火虫相互之间建构了有效的信息交互网络后,各萤火虫将借助各自视觉范围内的更优近邻个体完成后期搜索和进化,当种群陷入局部最优区域时,利用高斯变异改善萤火虫个体的多样性。利用标准测试函数进行了实验分析,结果表明,改进后的萤火虫算法能有效改善过早进化停滞问题。 相似文献
4.
花授粉算法是一种新的启发式算法,由于存在易陷入局部最优且演化后期收敛速度慢等缺陷,导致算法的寻优能力受到限制。针对该算法存在的不足,在局部授粉过程中引入自适应的变异因子,并对花授粉算法中的转换概率进行自适应调整后,将其与萤火虫算法相结合,提出了一种基于萤火虫算法的改进花授粉算法;最后,通过经典的标准测试函数对新提出的算法与DE-FPA、PSO-FPA做比较实验。实验结果表明,改进后的算法比基本花授粉算法具有更高的收敛精度和稳定性。 相似文献
5.
自适应步长萤火虫群多模态函数优化算法 总被引:3,自引:2,他引:1
针对萤火虫群优化(GSO)算法优化多模态函数存在收敛速度慢和求解精度低等缺陷,提出一种自适应步长萤火虫群多模态函数优化算法((SASGSO)。该算法解决了萤火虫群优化(GSO)算法优化多模态函数所存在的不足;同时SASGSO算法也可找到多模态函数的所有极值点。数值实验仿真表明,该算法具有操作简单、易理解、收敛速度快和求解精度高等优点。 相似文献
6.
7.
带交尾行为的混沌人工萤火虫优化算法 总被引:1,自引:0,他引:1
针对基本萤火虫优化(GSO)算法在求解全局优化问题存在易陷入局部极小值、收敛速度慢和求解精度不高等缺陷,首先对基本萤火虫优化算法采用混沌搜索技术进行初始化,使算法获得质量较高且分布较均匀的初始解,在此基础上再引入交尾行为,提出了一种带交尾行为的混沌萤火虫优化算法(MCGSO)。该算法在一定程度上防止了基本GSO算法易陷入局部最优,且能够获得精度更高的解甚至可达到理论最优解。最后,通过对8个标准测试函数进行测试,测试结果表明,带交尾行为的混沌萤火虫优化算法比基本萤火虫优化算法有更高的收敛速度和求解精度。 相似文献
8.
对随机组合优化问题中的概率旅行商问题(PTSP)的理论和方法进行了研究分析,采用现代进化算法中有代表性发展优势的萤火虫优化算法(FA),提出一种离散萤火虫优化算法(DFA)以求解.其中引入了新的学习机制使其相比原始的萤火虫优化算法,更容易搜索到全局最优解,有更好的收敛性能.实验中用TSPLIB中的经典实例进行测试来验证其可行性.考察了萤火虫数量和进化迭代次数对求解结果性能的影响,并将DFA与GA、PSO和ACO等其他著名的进化计算算法进行性能比较.实验结果证实了DFA无论对固定访问概率,还是访问概率为区间内随机数等不同情况,都具有良好的有效性和高效性,因此对求解随机组合优化系列问题的有效解决具有一定参考和借鉴价值. 相似文献
9.
针对萤火虫群优化(GSO)算法求解高维函数时存在求解精度不高、收敛速度慢等缺点,提出了一种带变异算子和集群觅食行为算子的改进萤火虫群优化算法。该算法使用变异算子来指导离群萤火虫的进化方向,从而提高了离群个体的利用率,改善了算法的整体效率。集群觅食行为算子的加入能使算法对捕捉到的全局最优域进行更进一步的求精,极大地提高了算法的计算精度和收敛速度;同时,该算子有效地防止了算法陷入局部最优值的危险,扩大了算法在后期的全局搜索范围。通过8个典型的基准函数测试,结果表明:改进后萤火虫群优化算法具有更强的全局优化能力和更高的成功率。 相似文献
10.
针对人工鱼群算法(artificial fish-swarm algorithm,AFSA)和萤火虫算法(firefly algorithm,FA)在多维多极值函数寻优过程中易陷入局部最优和精度有待提高等问题,提出引入Lévy flight和萤火虫行为的鱼群算法(fish swarm algorithm with Lévy flight and firefly behavior).该算法将萤火虫算法中萤火虫个体的移动策略引入到鱼群的聚群,觅食两种行为模式中,进而将Lévy flight引入到鱼群的搜索策略中,使得鱼群的搜索更加高效.此外,采取一种基于动态参数的非线性变视野和变步长的策略来限定鱼群的搜索范围.仿真分析表明,新算法较其他测试算法具有更好的全局搜索能力和寻优精度. 相似文献
11.
针对传统粒子滤波算法中存在的粒子多样性丧失问题,提出一种基于人工萤火虫群优化的改进粒子滤波算法.该算法利用人工萤火虫群算法优化粒子滤波的重采样过程,按照权值的蜕化程度对样本集进行分层,通过转移概率将权值蜕化子集——映射到高似然区域.根据优化阈值条件,将低权值粒子集分为抛弃组和优化组,通过选取优化组粒子和高权值粒子适当地线性组合产生新粒子集.仿真结果表明,当感知系数为零时,优化算法将蜕化为基本粒子滤波算法;在适当选择感知系数的情况下,优化算法的滤波精度较高,跟踪突变状态的性能较优,在保证粒子群贴近真实后验分布的同时,增强了粒子的多样性. 相似文献
12.
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高. 相似文献
13.
Glowworm swarm optimization (GSO) algorithm is the one of the newest nature inspired heuristics for optimization problems. In order to enhances accuracy and convergence rate of the GSO, two strategies about the movement phase of GSO are proposed. One is the greedy acceptance criteria for the glowworms update their position one-dimension by one-dimension. The other is the new movement formulas which are inspired by artificial bee colony algorithm (ABC) and particle swarm optimization (PSO). To compare and analyze the performance of our proposed improvement GSO, a number of experiments are carried out on a set of well-known benchmark global optimization problems. The effects of the parameters about the improvement algorithms are discussed by uniform design experiment. Numerical results reveal that the proposed algorithms can find better solutions when compared to classical GSO and other heuristic algorithms and are powerful search algorithms for various global optimization problems. 相似文献
14.
15.
16.
粒子群和人工鱼群混合优化算法 总被引:2,自引:1,他引:2
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。 相似文献
17.
为了解决目标函数中含有sin、cos等周期函数的优化问题,基于生态系统循环食物链思想提出了一种新型函数优化算法,即AFC-ASO算法.在该算法中,假设在生态系统中的某个循环食物链系统中生活有多种不同类型的动物,这些不同类型的动物采取循环食物链的方式维持该生态系统的生态平衡.进食的方法是采用攫取食饵动物部分器官或吸取其体内物质的方式,但不会危及食饵动物的生命;同类型的动物分雌、雄两种性别.每种类型的动物在该生态系统中活动时,具有捕食、交配、集群、逃逸、游弋五种行为,依据这五种行为构造出了相关的演化算子.其中,捕食算子能够使得个体器官间交换信息;交配算子能使强壮个体将其优良信息传给虚弱个体;集群算子能使个体摆脱局部最优解陷阱;避险算子能增强个体之间的分散度;闲逛算子可以增加当前个体的活跃度;生长算子能确保该算法具有全局收敛性.结果表明,算法对求解某些类型的复杂函数优化问题,特别是目标函数中含有sin、cos等周期函数的一类复杂函数优化问题,具有较高的适应性和收敛速度. 相似文献
18.
基于遗传算法的人工鱼群优化算法 总被引:3,自引:0,他引:3
人工鱼群算法(AFSA)是一种高效的群智能全局优化技术.通过对人工鱼群算法(AFSA)不足的研究,在遗传算法的基础上,提出了基于遗传算法的人工鱼群优化算法.该算法保留了人工鱼群算法(AFSA)简单、易实现的特点,同时克服了人工鱼漫无目的的随机游动或在非全局极值点的大量聚集,显著提高了算法的运行效率和求解质量.最后通过大量的函数和实例测试结果表明,与其它算法相比,该算法是可行和有效的,具有运行速度快和求解精度高等特点. 相似文献
19.
基于排序优化的微粒群算法 总被引:2,自引:0,他引:2
微粒群算法是一种新颖的群智能仿生进化优化算法,其原理简单,控制参数少,容易实现,在连续空间中有很强的优化能力。研究了将微粒群算法应用于基于排序的组合优化问题,进行了算法设计,给出了算法的流程,提出了计算两个排列的差及由置换求微粒群算法的速度的具体操作方法。为加快算法的收敛速度,增强全局搜索能力,运用矩阵的逐行最小元法来初始化微粒群,引入了突变算子。对一些测试旅行商问题利用新算法进行了模拟仿真,结果表明算法是可行的。 相似文献
20.
目前的智能优化算法易陷入本地最优平衡态,并且进化后期的效率低下。为了克服这些缺陷,提出了一种基于正交优化的群智能优化算法。该算法突破了以往正交设计方法仅能用在粒子群初始化和进化前优化搜索过程的局限,基于方差分析和方差比例分析,证实了正交设计方法进一步的搜索方向和范围。使用正交设计的特征在一次阵列计算中寻找包含最优值的间隔,算法可以在优化搜索过程中循环进行方差比例分析。对六峰值驼背函数的仿真分析结果说明,正交智能优化算法相比目前的智能优化算法,计算量更低,搜索时间更短,运行速度更快,且优化搜索过程的精度更高。 相似文献