共查询到20条相似文献,搜索用时 62 毫秒
1.
微波加热测定盐酸小檗碱的水分 总被引:6,自引:0,他引:6
用微波加热测定盐酸小檗碱中的水分。研究表明,将微波炉调于MEDLOW档,加热时间控制45min,所测定盐酸小檗碱中水分的结果与药典法测定的结果一致。 相似文献
2.
目的:建立黄连水提液中同时测定盐酸小檗碱和盐酸药根碱的高效液相色谱法。方法:加热回流法制备黄连药材水提液,反相高效液相色谱外标法同时测定盐酸小檗碱和盐酸药根碱的含量。结果:盐酸小檗碱和盐酸药根碱的的线性范围分别为:7.5~243.0μg/mL和0.78~34.2μg/mL,平均回收率分别为99.3%和100.1%供试。药材中盐酸小檗碱和盐酸药根碱的含量为21.3 mg/g和9.6 mg/g。结论:该方法能用于黄连药材中盐酸小檗碱和盐酸药根碱的含量测定。 相似文献
3.
目前盐酸小檗碱在临床上应用广泛,不仅可以作为广谱抗生素应用于抗痢、抗幽门螺杆菌,也在抗肿瘤、降血糖等方面发挥作用,尤其在消化系统疾病治疗中疗效可观.本文主要对其在消化系统疾病中临床应用进行综述,对盐酸小檗碱的临床应用研究进行了解. 相似文献
4.
本文采用3种不同方法,分别以乙醇、丙酮、水作为提取溶剂对黄连小檗碱进行提取.以盐酸小檗碱作为对照,用标准曲线法测定各种溶剂及方法提取液中黄连小檗碱的提取率.实验结果表明:采用回流提取法,提取溶剂为乙醇,黄连小檗碱的提取率达到81%以上,标准偏差为0.0005,相对标准偏差为0.06% 相似文献
5.
解吸-内部沸腾两步法提取黄连小檗碱的工艺及机理 总被引:11,自引:0,他引:11
采用解吸-内部沸腾两步法强化植物有效成分提取,首先用少量低沸点解吸剂饱和植物组织,以使组织内部的有效成分充分解吸,然后快速加入温度高于解吸剂沸点的溶剂,使植物组织内部的解吸剂迅速被加热至沸腾,强化传质过程. 对黄连中的小檗碱提取实验结果表明,两步法提取2次只需6 min,提取浸膏中小檗碱含量达到53.3%,颗粒度在160~400 mm范围内对提取效果基本没有影响. 热水温度影响实验发现,当内部沸腾发生时提取速度发生突变. 两步法提取黄连不但比传统法优势明显,而且容易实现,应用前景良好. 相似文献
6.
7.
用乙醇提取黄连中盐酸小檗碱,采用正交实验法优化工艺条件.结果表明,优选的醇提工艺条件为:50%乙醇提取3次,每次提取时间1.5h,3次加醇量分别8,6,6倍.该醇提工艺重现性和稳定性良好. 相似文献
8.
黄连中小檗碱的超声波提取工艺 总被引:6,自引:1,他引:6
以黄连为原料,研究小檗碱的超声波提取工艺。确定最佳工艺条件为:以乙醇为提取溶剂,超声时间30min、温度50℃、乙醇浓度80%和超声波提取两次。在此条件下,对超声波法提取小檗碱与传统乙醇浸提法进行比较,结果表明,超声波法提取工艺比传统乙醇浸提法小檗碱产量提高了42%。 相似文献
9.
10.
11.
12.
13.
采用索氏提取法提取水浸预处理后的五味子中的木脂素,考察了虹吸次数、液固比、颗粒粒径及乙醇浓度对萃取率的影响,采用响应面法进行优化. 结果表明,五味子醇甲的最佳提取条件为:乙醇浓度98.05%(j),液固比67.20 mL/g,颗粒平均粒度0.33 mm,该条件下理论萃取率为80.90%,实际萃取率为77.17%;五味子甲素的最佳提取条件为:乙醇浓度96.38%(j),液固比72.52 mL/g,颗粒平均粒度0.21 mm,该条件下五味子甲素理论萃取率为77.11%,实际萃取率为74.31%;五味子乙素的提取最佳条件为:乙醇浓度96.38%(j),液固比72.52 mL/g,颗粒平均粒度0.21 mm,该条件下理论萃取率为77.13%,实际萃取率为74.23%. 各因素对木脂素提取率影响的显著性顺序为乙醇浓度>液固比>颗粒粒径. 相似文献
14.
建立高效液相色谱法测定醒脑再造胶囊中盐酸小檗碱含量的方法。采用Hypersil-BDS色谱柱,以磷酸盐缓冲液(0.05 mol/L磷酸二氢钾和0.05 mol/L庚烷磺酸钠(1∶1),含0.2%三乙胺,并用磷酸调pH值至3.0)∶乙腈(60∶40)为流动相,检测波长为265 nm。盐酸小檗碱在0.04404~1.3212μg范围内与峰面积呈良好的线性关系,相关系数为1.0000,平均回收率为97.20%(RSD=1.43%)。该法快速简便,精确度好,可作为控制醒脑再造胶囊质量的方法。 相似文献
15.
16.
17.
18.
《分离科学与技术》2012,47(11):1829-1837
The separation processes of the phenolic compounds from solid plant matrixes are of great importance. In the scope of developing more efficient methods to separate olive leaf extract, dried and ground olive tree leaves from Aegean region of Turkey were extracted by means of Soxhlet and supercritical fluid extraction (SFE) methods. In the Soxhlet method, different types of solvents (hexane, water, ethanol, methanol, and methanol/hexane (3:2, v/v) mixture) were used to determine the effect of the solvent type on the extraction performance. In the SFE method, the effect of pressure (100–300 bar), temperature (50 and 100°C), and type of co-solvent on the amount of both extract and oleuropein were investigated. Ethanol, methanol and water were selected as co-solvent in 20% (v/v) amount. Quantitative analysis was performed by using a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) technique. The results of SFE were compared with those obtained by the Soxhlet method. Whereas the highest oleuropein yield was achieved via the Soxhlet method through methanol with the value of 37.84 mg/g dried leaf, the best oleuropein yield was achieved with the value of 14.26 mg/g dried leaf by using CO2 modified by methanol at 300 bar and 100°C in the SFE method. 相似文献
19.
Junqing Qian Xiaohua Zhao Changyan Zhao Haiyan Yang Lihong Gou Wentao Wang Hui Guo 《European Journal of Lipid Science and Technology》2021,123(1):2000223
High-temperature pretreatment that is currently used in camellia oil extraction can have negative effects on the quality of camellia oil. In this study, the enzymatic pretreatment of camellia seeds is explored as an alternative to high-temperature pretreatment. The main conditions for enzymatic pretreatment of camellia seeds including enzyme, pH, temperature, time, and buffer solution are optimized using the response surface methodology. Under the optimal conditions of enzymatic pretreatment, the oil recovery is close to 75%. Moreover, residual oil recovery from camellia seeds subjected to 1398 neutral protease pretreatment (4 g per kg seeds) and high-temperature pretreatment are 5.62 ± 0.08% and 9.97 ± 0.18%, respectively. The enzymatic pretreatment is further applied to pre-pressing solvent extraction of camellia oil, the cake oil recovery from camellia seeds subjected to enzymatic pretreatment is higher than that from high-temperature pretreatment. These results show that enzymatic pretreatment of camellia seeds has potential for application in the oil industry. Practical Applications : This study suggests that enzymatic pretreatment can replace high-temperature pretreatment and improve oil recovery and oil quality. Ultimately, this method can be used to extract camellia oil. 相似文献