首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe2O3/ZrO2 catalysts prepared by impregnation and coprecipitation methods were used for catalytic hydrogenation of CO. It was shown that the structure, reduction behavior of iron species, and catalytic properties of the catalysts were obviously affected by the preparation methods. For the Fe2O3/ZrO2 catalyst prepared by the impregnation method, the Fischer-Tropsch catalytic activity and the selectivity to light olefins were much higher than those of the corresponding catalyst prepared by the coprecipitation method, the formation of methane was suppressed and the selectivity to light olefins was enhanced. Various intermediates formed during the successive steps of reduction of the catalysts were studied by using temperature-programmed reduction combined with in situ Mössbauer spectroscopy. The role of zirconia in the catalysts was discussed.  相似文献   

2.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

3.
通过改变甲醇热时间制备了一系列不同晶粒尺寸的四方相 ZrO2,采用过体积浸渍法制备了Ni 含量(质量分数)为10%的Ni/ZrO2催化剂,并考察了其催化顺酐液相加氢性能。采用氮气吸附-脱附(BET)、X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、原位红外光谱(in situ FTIR)等手段对催化剂进行了表征。研究结果表明,分散性好、晶粒尺寸小的Ni物种有利于C=C键加氢生成丁二酸酐;而金属-载体强相互作用的形成则有利于C=O加氢生成 γ-丁内酯。当甲醇热时间为2 h时,制备的Ni/ZrO2催化剂的C=O加氢活性最高,在反应温度为210℃,反应压力为5 MPa,反应时间为3 h时,其顺酐转化率达100%,γ-丁内酯选择性为44.7%。  相似文献   

4.
Submonolayer deposits of titania on a Rh foil have been found to increase the rate of CO2 hydrogenation. The primary product, methane, exhibits a maximum rate at a TiO x coverage of 0.5 ML which is a factor of 15 higher than that over the clean Rh surface. The rate of ethane formation displays a maximum which is 70 times that over the unpromoted Rh foil; however, the selectivity for methane remains in excess of 99%. The apparent activation energy for methane formation and the dependence of the rate on H2 and CO2 partial pressure have been determined both for the bare Rh surface and the titania-promoted surface. These rate parameters show very small variations as titania is added to the Rh catalyst. The methanation of CO2 is proposed to start with the dissociation of CO2 into CO(a) and O(a), and then proceed through steps which are identical to those for the hydrogenation of CO. The increase in the rate of CO2 hydrogenation in the presence of titania is attributed to an interaction between the adsorbed CO, released by CO2 dissociation, and Ti3+ ions located at the edge of TiO x islands covering the surface. Differences in the effects of titania promotion on the methanation of CO2 and CO are discussed in terms of the mechanisms that have been proposed for these two reactions.  相似文献   

5.
ZrO2 prepared by the precipitation method of zirconium oxychloride with various hydrolyzing agents was studied for photocatalytic water splitting reaction under UV light irradiation. The crystal structure as well surface properties were varied with the hydrolyzing agent of KOH, NH4OH, and NH2CONH2. Especially, the surface area of the prepared ZrO2 calcined at the same temperature of 750 °C for 6 h was dependent highly on the hydrolyzing agent, and thus the highest photocatalytic activity was obtained for ZrO2 with the highest surface area when KOH was used as a hydrolyzing agent, In the presence of Na2CO3, the photocatalytic activity of ZrO2 increased by 2–3 fold, which was ascribed to the physically adsorbed carbonate species on the ZrO2 surface. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

6.
铁含量对Fe-Mn-K催化剂上CO2加氢反应性能的影响   总被引:2,自引:0,他引:2  
在370 ℃、2.0 MPa和600 h-1条件下,考察了Fe-Mn-K复合催化剂上的CO2选择性加氢合成低碳烯烃性能。XRD表征表明,复合催化剂中负载的金属组分主要以Fe2O3和MnO2形式存在。通过H2-TPR和CO2-TPD研究了Fe-Mn-K催化剂对H2的还原性能和CO2吸附性能的影响,当催化剂中Fe负载质量分数为12%时,H2-TPD温度较低,CO2转化率大于30%,C=2~C=4低碳烯烃选择性也较高。CO2-TPD结果表明,随Fe含量的增加,初始脱附温度提高,脱附量增加,催化剂对CO2的吸附强度逐渐增大。  相似文献   

7.
Hydrogenation of adsorbed ethene over ZrO2 at low temperature was observed by in situ infrared transmission spectroscopy. It was found that di-hydrogen was directly activated on the site where ethene was already adsorbed, which was confirmed by the comparison of adsorbed species produced during the reaction and adsorbed ethane species.  相似文献   

8.
The hydrogenation of C, CO, and CO2 has been studied on polycrystalline cobalt foils using a combination of UHV studies and atmospheric pressure reactions in temperature range from 475 to 575 K at 101 kPa total pressure. The reactions produce mainly methane but with selectivities of 98, 80, and 99 wt% at 525 K for C, CO, and CO2, respectively. In the C and CO2 hydrogenation the rest is ethane, whereas in CO hydrogenation hydrocarbons up to C4 were detected. The activation energies of methane formation are 57, 86, and 158 kJ/mol from C, CO, and CO2, respectively. The partial pressure dependencies of the CO and CO2 hydrogenation indicate roughly first order dependence on hydrogen pressure (1.5 and 0.9), negative first order on CO (–0.75) and zero order on CO2 (–0.05). Post reaction spectroscopy revealed carbon deposition from CO and oxygen deposition from CO2 on the surface above 540 K. The reduction of cobalt oxide formed after dissociation of C-O bonds on the surface is proposed to be the rate limiting step in CO and CO2 hydrogenation.  相似文献   

9.
Formic acid and formates are often produced by hydrogenation of CO2 with hydrogen over homogeneous catalysts. The present review reports recent achievements in utilization of heterogeneous catalysts. It shows that highly dispersed supported metal catalysts are able to carry out this reaction by providing activation of hydrogen on the metal sites and activation of CO2 or bicarbonate on the support sites. Important advances have recently been achieved through utilization of catalysts using CxNy materials as supports. The high activity of these catalysts could be assigned to their ability to stabilize the active metal in a state of single-metal atoms or heterogenized metal complexes, which may demonstrate a higher activity than metal atoms on the surface of metal nanoparticles.  相似文献   

10.
The reforming of CH4 with CO2 over supported Rh catalysts has been studied over a range of temperatures (550–1000 K). A significant effect of the support on the catalytic activity was observed, where the order was Rh/Al2O3>Rh/TiO2>Rh/SiO2. The catalytic activity of Rh/SiO2 was promoted markedly by physical mixing of Rh/SiO2 with metal oxides such as Al2O3, TiO2, and MgO, indicating a synergetic effect. The role of the metal oxides used as the support and the physical mixture may be ascribed to the promotion in dissociation of CO2 on the surface of Rh, since the CH4 + CO2 reaction is first order in the pressure of CO2, suggesting that CO2 dissociation is the rate-determining step. The possible model of the synergetic effect was proposed.  相似文献   

11.
The hydrogenation of CO over a RhVO4/SiO2 catalyst has been investigated after H2 reduction at 773 K. A strong metal–oxide interaction (SMOI) induced by the decomposition of RhVO4 in H2 enhanced not only the selectivity to C2 oxygenates but also the CO conversion drastically, compared with an unpromoted Rh/SiO2 catalyst. The selectivity of the RhVO4/SiO2 catalyst was similar to those of conventional V2O5‐promoted Rh/SiO2 catalysts (V2O5–Rh/SiO2), but the CO dissociation activity (and TOF) was much higher than for V2O5–Rh/SiO2, and hence the yield of C2 oxygenates was increased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The carbon formed during the reaction of CO + H2 on iron catalysts plays an essential role in determining the catalytic activity, product selectivity and deactivation. Different forms of carbon can be distinguished in the reaction: (i) reactive or mobile carbon, already identified for iron and ruthenium catalysts; (ii) immobile carbon which is responsible for methane formation, and (iii) bulk, inactive carbide which makes the catalysts deactivated.Various possibilities are available for stabilizing the catalytically active metallic component. One of the important factors is the particle size. The smaller the iron particle, the less amount of inactive carbon is formed. Other factors such as the type of support (e.g. zeolite) which maintains the iron in highly dispersed state, or the use of second metal or non-reducible promoter by which high dispersion of iron can be ensured and stabilized, favourably affect the activity and selectivity of the catalysts, as well. In the present paper examples are presented for the above mentioned cases.  相似文献   

13.
This study critically reviews the mechanism of CO2 hydrogenation over Ni, Ru, and Cu, and the effect of catalyst properties and operating conditions on reaction kinetics. Most studies have reported the presence of CO and formate species on Ni-, Ru-, and Cu-based catalysts, where subsequent conversion of these species depends on the type of catalyst and the physicochemical properties of the catalyst support. Methane is the major product that forms during CO2 hydrogenation over Ni and Ru catalysts, while methanol and CO are mainly produced on Cu catalysts. A different approach for catalyst formulations and/or process development is required where long chain hydrocarbons are desired.  相似文献   

14.
20%SrO-20%La2O3/CaO catalyst (SLC-2), prepared by impregnation, has shown 18% CH4 conversion and 80% C2-selectivity for the oxidative coupling of methane (OCM) at 1073–1103 K with CH4O2 molar ratio=91 and total flow rate of 100 ml/min. Addition of SrO onto La2O3/CaO (LC) catalyst strengthens the surface basicity and leads to an increase in CH4 conversion and C2-selectivity. Meanwhile, the reaction temperature required to obtain the highest C2-yield increases with increasing SrO content. The formation of carbonate on the catalyst surface is the main reason for the deactivation of LC and SLC catalysts. If the amount of CO2 added into the feed is appropriate and the reaction temperature is high enough, there is no deactivation at all. In such case, the added CO2 will suppress the formation of CO2 produced via the OCM reaction, therefore, improves the C2-selectivity. The FT-IR spectra of CO2 adspecies recorded at different temperatures show that CO2 interacts easily with the catalyst surface to form different carbonate adspecies. Unidentate carbonate is the main CO2 adspecies formed on the catalyst surface. On the LC catalyst surface, the unidentate carbonate was first formed on Ca2+ cations at room temperature. If the temperature is higher than 473 K, it will form on La3+ cations. On the SLC catalyst surface, if the temperature is lower than 573 K, only the unidentate carbonate formed on Ca2+ cations could be observed. When the temperature is higher than 673 K, it will then form on Sr2+ cations. This suggests that the unidentate carbonate can migrate on the LC and SLC catalyst surface on one hand, and on the other hand, that the surface composition of SLC catalysts is dynamic in nature. On the basis of both the decomposition temperatures of the carbonate species, and the temperature dependence of the value which is the difference of symmetric and asymmetric stretching frequencies of surface carbonates, the in situ FT-IR technique offered two approaches to measure the surface basicity of the SLC catalyst. The results thus obtained are in good agreement with that of CO2-TPD. The role of the surface basicity of the SLC catalyst is also discussed.  相似文献   

15.
16.
Silicon carbide supported nickel catalysts for CO methanation were prepared by impregnation method. The activity of the catalysts was tested in a fixed-bed reactor with a stream of H2/CO = 3 without diluent gas. The results show that 15 wt.% Ni/SiC catalyst calcined at 550 °C exhibits excellent catalytic activity. As compared with 15 wt.% Ni/TiO2 catalyst, the Ni/SiC catalyst shows higher activity and stability in the methanation reaction. The characterization results from X-ray diffraction and transmission electron microscopy suggest that no obvious catalyst sintering has occurred in the Ni/SiC catalyst due to the excellent thermal stability and high heat conductivity of SiC.  相似文献   

17.
Sakae Takenaka 《Fuel》2004,83(1):47-57
Methane decomposition into H2 and carbon nanofibers at 823 K and subsequent gasification of the carbon nanofibers with CO2 into CO at 923 K were performed over supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/Al2O3). Supported Ni catalysts were deactivated for CH4 decomposition with time on stream due to deposition of a large amount of carbon nanofibers. Subsequent contact of CO2 with carbon nanofibers on the deactivated catalysts resulted in the formation of CO with a conversion of the carbons higher than 95%. In addition, gasification with CO2 regenerated the activity of supported Ni catalysts for CH4 decomposition, indicating that H2 formation through CH4 decomposition and CO formation through gasification with CO2 could be carried out repeatedly. Conversions of carbon nanofibers into CO were kept higher than 95% in the repeated gasification over all the catalysts, while change in the catalytic activity for CH4 decomposition with the repeated cycles depended on the kind of catalytic supports. Catalytic activity of Ni/SiO2 for CH4 decomposition was high at early cycles, however, the activity decreased gradually with the repeated cycles. On the other hand, Ni/TiO2 and Ni/Al2O3 showed high activity for CH4 decomposition and the activity was kept high during the repeated cycles. These changes of catalytic activities for CH4 decomposition could be explained by changes in particle sizes of Ni metal, i.e. Ni metal particles in Ni/SiO2 aggregated into ones larger than 150 nm with the repeated cycles, while the particle sizes of Ni metal in Ni/TiO2 and Ni/Al2O3 remained at an effective range for CH4 decomposition (60-100 nm).  相似文献   

18.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

19.
Sol-gel derived Cu/ZrO2 catalysts have recently been shown to have high activity and selectivity toward methanol synthesis. TPR, TEM, in situ XRD and N2O decomposition have now been used to characterize the active sites in such catalysts over a wide range of Cu concentration. Copper is shown to be in two forms: surface aggregates (or particulate) and dispersed copper in the ZrO2 substitutional sites. The proportion of the former increases with an increasing Cu content, while the overall strength of the Cu-ZrO2 interaction simultaneously decreases. The activity in CO/CO2 hydrogenation showed no evident correlation with the total Cu surface area, but rather with the concentration of highly-dispersed form of copper. This is taken to indicate that the copper in the substitutional sites of ZrO2 is predominantly responsible for and associated with the active sites on Cu/ZrO2 for CO/CO2 hydrogenation.  相似文献   

20.
The combined partial oxidation and CO2 reforming of methane to synthesis gas was investigated over the reduced Co/MgO, Co/CaO, and Co/SiO2 catalysts. Only Co/MgO has proved to be a highly efficient and stable catalyst. It provided about 94–95% yields to H2 and CO at the high space velocity of 105000 mlg–1h–1 and for feed ratios CH4/CO2/O2=4/2/1, without any deactivation for a period of study of 110 h. In contrast, the reduced Co/CaO and Co/SiO2 provided no activity for the formation of H2 and CO. The structure and reducibility of the calcined catalysts were examined using X-ray diffraction and temperature-programmed reduction, respectively. A solid solution of CoO and MgO, which was difficult to reduce, was identified in the 800°C calcined MgO-supported catalyst. The strong interactions induced by the formation of the solid solution are responsible for its superior activity in the combined reaction. The effects of reaction temperature, space velocity, and O2/CO2 ratio in the feed gases (while keeping the C/O ratio constant at 1/1) were investigated over the Co/MgO catalyst. The H2/CO ratio in the product of the combined reaction increased with increasing O2/CO2 ratio in the feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号