首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Chip on Glass (COG) process, which bonds the driver IC onto a glass substrate via anisotropic conductive film (ACF), is applied in producing a liquid crystal display (LCD) module package. Both the stability of the ACF conductive particle conductive property and the prevention of short connections are important directions for the development of ACF material and fine pitch COG process. Better connection reliability can be achieved if more conductive particles remain on the bump with particles rarely clustered in the space between the bumps. Several types of driver ICs with different bump area ratios (total input bump area/total output bump area, I/O ratio) and length/width (L/W) ratios are designed in this study to investigate the correlation between IC structure and these characteristics. The results show that the bump design influences the ACF adhesive flow causing varied capture rate effects on the bump and particle density in the space. The results provide guidance in bump design for driver ICs in the COG process.  相似文献   

2.
Chip on glass (COG) technology is widely used in liquid crystal display (LCD) modules for connecting driver ICs to the displays especially for middle and small size panels. The most common COG technology currently used in display applications is based on anisotropic conductive films (ACF). As the increasing demand in higher resolution and cost reduction, the bump pitch of the driver ICs becomes finer and finer. With the reduction of bump pitch, the current ACF based COG technology is confronted with two issues: one is the increase of the chances of open circuit; the other is the increase of the chances of forming shorts. A new approach for ultra-fine pitch chip on glass (COG) bonding, named ”Particle on Bump (POB)”, is proposed in this paper. In this technique, conductive particles are planted on the top surface of bumps of a driver IC through Au–Sn intermetallic connection. The driver IC is then assembled on the glass substrate of a LCD panel with an insulated adhesive by thermal press. The new method ensures that electrical connections are established only between bumps and corresponding pads. The Au–Sn reflow process for particle planting and corresponding COG bonding process were investigated in detail. The results showed that reliable connections were formed between particles and bumps through an Au–Sn intermetallic layer and final COG interconnections thus formed performed well in reliability tests. It is concluded that the POB technique overcomes the shortcomings of current ACF technique and has good potential to provide a viable ultra-fine pitch flip chip on glass solution for display applications.  相似文献   

3.
This paper describes how the material properties of conductive particles in anisotropic conductive films (ACFs) affect the electrical conductivity and the reliability of ACF interconnections for chip-on-glass (COG) applications. For the conductive particles, Au/Ni-coated polymer particles with a 5-diameter were used. Two different types of conductive particles were characterized with respect to their mechanical and electrical properties, such as ball hardness, recovery behavior, and electrical resistance. In addition, two ACFs were fabricated in the form of a double-layered structure, in which the thickness of the ACF and a nonconductive film (NCF) layer were optimized to have as many conductive particles as possible on the bump after COG bonding. The electrical contact resistance of an ACF interconnection in a COG structure depends mainly on the electrical properties of conductive particles in the ACF. The electrical reliability of an ACF interconnection in a COG structure also depends more on the electrical properties than the mechanical properties of conductive particles under a high-temperature and humid condition. Conductive particles with a lower electrical resistance, higher mechanical hardness, and lower recovery rate show better reliability than conductive particles with a higher electrical resistance, lower mechanical hardness, and higher recovery rate. Cross-sectional scanning electron microscopic (SEM) pictures of a COG interconnection show the deformation of two different conductive particles after the reliability tests. The ACF interconnections in the edge or corner of a driver IC show less reliable joints due to high absorption of moisture.  相似文献   

4.
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.  相似文献   

5.
In this paper, the effects of heating rate during anisotropic conductive film (ACF) curing processes on ACF material properties such as thermomechanical and rheological properties were investigated. It was found that as the heating rate increased, the coefficient of thermal expansion (CTE) of the ACF increased, and the storage modulus and glass transition temperature $(T _{g})$ of the ACF decreased. Variation of the ACF material properties are attributed to cross-linking density, which is thought to be related with the ACF density. In addition, as the heating rate increased, the minimum viscosity of the ACF decreased and the curing onset temperature increased during the curing process. The similar phenomenon was also found in in-situ contact resistance measurement. As the heating rate increased, contact resistance establishing temperature increased and the contact resistances of the ACF flip chip assemblies decreased. The decrease in contact resistance was due to larger conductive particle deformation which leads to larger electrical contact area. The effect of the heating rate of ACFs on thermal cycling (T/C) reliability of flip chip assemblies was also investigated. As the heating rate increased, the contact resistances of the ACF flip chip assembly rapidly increased during the T/C test. The T/C reliability test result was analyzed by two terms of shear strain and conductive particle deformation. Reduced gap of joints due to reduced ACF viscosity resulted in larger shear strain. Moreover, many cracks were observed at metal-coated layers of conductive particles due to larger deformation.   相似文献   

6.
Chip-on-glass (COG) interconnection using anisotropic conductive film (ACF) is susceptible to open failures. Open failures can be induced by the absence of conductive particles or an insufficient contact. Experimental results as well as statistical approaches were used to understand the conditions for open failures in COG bonding. The binomial distribution was used to predict the probability of the open failure due to the deficiency of conductive particles. The probability of an open failure decreased with increasing bump area and decreasing particle size. The bump height variation was also an important factor that affected the probability of the open failure together with the bump-to-electrode gap and the particle size. The variation in bump height should be minimized to avoid open failures in fine-pitch applications where a smaller particle size is required.  相似文献   

7.
A new chip on glass (COG) technique using flip chip solder joining technology has been developed for excellent resolution and high quality liquid crystal display (LCD) panels. The flip chip solder joining technology has several advantages over the anisotropic conductive film (ACF) bonding technology: finer pitch capability, better electrical performance, and easier reworkability. Conventional solders such as eutectic Pb-Sn and Pb-5Sn require high temperature processing which can lead to degradation of the liquid crystal or the color filter in LCD modules. Thus it is desirable to develop a low temperature process below 160/spl deg/C using solders with low melting temperatures for this application. In our case, we used eutectic 58 wt%Bi-42 wt%Sn solder for this purpose. Using the eutectic Bi-Sn solder bumps of 50-80/spl mu/m pitch sizes, an ultrafine interconnection between the IC and glass substrate was successfully made at or below 160/spl deg/C. The average contact resistance of the Bi-Sn solder joints was 19m/spl Omega/ per bump, which is much lower than the contact resistance of conventional ACF bonding technologies. The contact resistance of the underfilled Bi-Sn solder joints did not change during a hot humidity test. We demonstrate that the COG technique using low temperature solder joints can be applied to advanced LCDs that lead to require excellent quality, high resolution, and low power consumption.  相似文献   

8.
Failure behaviors of anisotropic conductive film (ACF) and non-conductive film (NCF) interconnects were investigated by measuring the connection resistance. The four-point probe method was used to measure the connection resistance of the adhesive joints constructed with Au bump on Si chip and Cu pad on flexible printed circuit. The interconnection reliability was evaluated by multiple reflow process. The connection resistance of the ACF joints was markedly higher than that of NCF joints, mainly due to the constriction of the current flow and the intrinsic resistance of the conductive particles in ACF joints. The connection resistances of both interconnections decreased with increasing bonding force, and subsequently converged to about 10 and 1 mOmega at a bonding force of 70 and 80 N, for the ACF and NCF joints, respectively. During the reflow process, two different conduction behaviors were observed: increased connection resistance and the termination of Ohmic behavior. The former was due to the decreased contact area caused by z-directional swelling of the adhesives, whereas the latter was caused by either contact opening in the adhesive joints or interface cracking.  相似文献   

9.
An accurate characterization for the deformation behavior of conductive particles is important: 1) to understand the anisotropic conductive adhesive (ACA) interconnection and 2) to optimize the ACA bonding parameter. This paper introduces an experimental technique, which has been developed to allow continuous monitoring of deformation characteristics of a single conductive particle. The load-deformation curve of a single conductive particle is measured, which provides the quantitative estimation of the mechanical and electrical characteristics of metal-coated polymer spheres used in ACAs. Based on the load-deformation result of a single conductive particle and the number of trapped particles on a bump, equivalent spring models are used to predict the deformation degree of conductive particles after flip chip assembly. For two kinds of conductive particles with different polymer cores, the mechanical and electrical characteristics of ACA interconnection were studied. Such results are used to further achieve a more sophisticated approach of the ACA bonding process and contact reliability.  相似文献   

10.
The chip-on-glass (COG) technique using anisotropic conductive film (ACF) has been developed for liquid crystal display (LCD) panels with excellent resolution and high quality for several years. However, many serious manufacturability and reliability issues were observed from previous studies. In those, delamination occurring at the ACF interface is one of the common concerns. Few works presented analysis of delamination mechanism through the whole COG bonding process with the combination of LCD module scale and ACF interconnect scale. In this paper, the delamination mechanism of COG/ACF interconnection was studied by using finite element analysis. Equivalent block and global-local modeling methods were implemented with nonlinear elastic-plastic and sequential coupled thermal-mechanical analysis. The critical parameters of the COG bonding process and geometry of integrated circuit (IC) and glass were investigated to understand the mechanism of ACF delamination. It was found that the delamination could be reduced by decreasing the temperature difference between bonding head and glass substrate or using thin and short IC. The local model analysis revealed that the interface of glass/ACF epoxy encountered the higher stress than that in the interface of IC/ACF epoxy and had the higher possibility to delaminate. Therefore, increasing the bonding-strength between glass and ACF epoxy is the direction to reduce the probability of ACF delamination.  相似文献   

11.
Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances, resulting in a high performance and cost-competitive packaging method. This paper describes the usefulness of low cost flip-chip assembly using electroless Ni/Au bump and anisotropic conductive films on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed as a low cost bumping method. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with Ni3P precipitation above 300°C causes an increase of hardness and an increase of the intrinsic stress. As interconnection material, modified ACFs composed of nickel conductive fillers for conductive fillers, and nonconductive fillers for modification of film properties, such as coefficient of thermal expansion (CTE), were formulated for improved electrical and mechanical properties of ACF interconnection. Three ACF materials with different CTE values were prepared and bonded between Si chips and FR-4 boards for the thermal strain measurement using moire interferometry. The thermal strain of the ACF interconnection layer, induced by temperature excursion of 80°C, was decreased according to the decreasing CTEs of ACF materials. This result indicates that the thermal fatigue life of ACF flip chip assembly on organic boards, limited by the thermal expansion mismatch between the chip and the board, could be increased by low CTE ACF  相似文献   

12.
In an anisotropic conductive adhesive (ACA) assembly, the electrical conduction is usually achieved with the conductive particles between the bumps of integrated circuit (IC) and corresponding conductive tracks on the glass substrate. Fully understanding of the mechanical and electrical characteristics of ACA particles can help to optimize the assembly process and improve the reliability of ACA interconnection. Most conductive particles used in the ACA assembly are with cracks in the metal coating of the particles after the ACA bonding. This paper introduced the fracture analysis by applying the cohesive elements in the numerical model of the nickel-coated polymer particle and further simulating the cracks initiation and propagation in the nickel coating during the ACA bonding. The simulation results showed that the stress distribution on the nickel-coated particle with cracks was significantly different from that on the nickel-coated particle without crack, indicating that the stress analysis by taking the crack into consideration is very important for the reliability assessment of the ACA interconnection. The stress analysis of cohesive elements indicated that the cracks initiated at the central area of the nickel coating and propagated to the polar area. Furthermore, by the introduction of a new parameter of the virtual resistance, a mathematical model was established to describe the electrical characteristics of the nickel-coated particle with cracks. The particle resistance of the nickel-coated particle with cracks was found to be much higher than that of the particle without crack in the optimized bonding pressure range, indicating that it is necessary to take the crack into consideration for the particle conduction analysis as well. Therefore, the fracture analysis on the conductive particle by taking the crack into consideration could accurately evaluate the reliability of ACA interconnection and avoid serious reliability issues.  相似文献   

13.
文章叙述了ACF(Anisotropic Conductive Film,各向异性导电膜)与驱动IC(Integrated Circuit,集成电路)芯片封装的历史,并强调了驱动IC封装在实现显示器微型化、高分辨率、低成本及高显示质量等方面的重要性。文章还对微细间距COF(Chip on Flex)连接用ACF的材料设计进行了介绍。文章指出低温固化ACF可以改善LCD(Liquid Crystal Display,液晶显示屏)模块的生产效率,降低大型LCD模块表面的热应力;同时指出COG(Chip on Glass)连接后LCD面板的翘曲变形引起LCD模块漏光事故。ACF焊接温度的降低可以有效减少翘曲变形,避免在应用COG封装大型LCD模块的驱动IC时所产生漏光。  相似文献   

14.
In this study, a systematic experimental work was performed to evaluate the reliability of the anisotropic conductive adhesive film (ACF) joint at high temperature for flip-chip-on-flex (FCOF) assemblies. A four-point probe method was developed to measure the contact resistance at high temperature. Measurement was also conducted along the length of the chip. The correlation between the increased resistance and the failure mechanism was investigated using scanning electron microscopy (SEM). Initially, the contact resistance increased linearly with rising temperature, but later, it increased abruptly. This changeover was related to the glass-transition temperature (Tg) of the ACF matrix. The coefficient of thermal expansion (CTE) is very high at temperatures above Tg; thus, the ACF swells too much, reducing the mechanical contact of the particles with the bump and/or pad. Again, as the adhesive strength becomes weaker at temperatures above the glass transition, it is unable to resist the thermal stress of the flex. The cumulative thermal stress at the edges dislodges the particles from the interconnection. Even below Tg, the thermal stress at the edges is higher than the middle point. Thus, the contact resistance varied from the middle joint of the chip to that of the corner at the same high temperature. To reduce the contact resistance at the corner joint of the FCOF packages bonded by ACF, a square-shaped chip instead of a chip with a higher aspect ratio should be used. It was also suggested to use an adhesive with a higher glass-transition temperature and lower CTE.  相似文献   

15.
Although there have been many years of development, the degradation of the electrical performance of anisotropically conductive adhesive or film (ACA or ACF) interconnection for flip-chip assembly is still a critical drawback despite wide application. In-depth study about the reliability and degradation mechanism of ACF interconnection is necessary. In this paper, the initial contact resistance, electrical performance after reliability tests, and degradation mechanisms of ACF interconnection for flip-chip-on-flex (FCOF) assembly were studied using very-low-height Ni and Au-coated Ni-bumped chips. The combination of ACF and very-low-height bumped chips was considered because it has potential for very low cost and ultrafine pitch interconnection. Contact resistance changes were monitored during reliability tests, such as high humidity and temperature and thermal cycling. The high, initial contact resistance resulted from a thin oxide layer on the surface of the bumps. The reliability results showed that the degradation of electrical performance was mainly related to the oxide formation on the surface of deformed particles with non-noble metal coating, the severe metal oxidation on the conductive surface of bumps, and coefficient of thermal expansion (CTE) mismatch between the ACF adhesive and the contact conductive-surface metallization. Some methods for reducing initial contact resistance and improving ACF interconnection reliability were suggested. The suggestions include the removal of the oxide layer and an increase of the Au-coating film to improve conductive-surface quality, appropriate choice of conductive particle, and further development of better polymeric adhesives with low CTE and high electrical performance.  相似文献   

16.
Chip-on-film (COF) is a new technology after tape-automated bonding (TAB) and chip-on-glass (COG) in the interconnection of liquid crystal module (LCM). The thickness of the film, which is more flexible than TAB, can be as thin as 44 μm. It has pre-test capability, while COG does not have. It possesses great potential in many product fabrication applications.In this study, we used anisotropic-conductive film (ACF) as the adhesive to bind the desired IC chip and polyimide (PI) film. The electric path was formed by connecting the bump on the IC and the electrode on the PI film via the conductive particles in the ACF. In the COF bonding process experimental-design method was applied based on the parameters, such as bonding temperature, bonding pressure and bonding time. After reliability tests of (1) 60 °C/95%RH/500 h and (2) −20 to 70 °C/500 cycles, contact resistance was measured and used as the quality inspection parameter. Correlation between the contact resistance and the three parameters was established and optimal processing condition was obtained. The COF samples analyzed were fabricated accordingly. The contact resistance of the COF samples was measured at varying temperature using the four points test method. The result helped us to realize the relationship between the contact resistance and the operation temperature of the COF technology. This yielded important information for circuit design.  相似文献   

17.
Anisotropic conductive film (ACF) bonding between liquid crystal displays (LCDs) and driver integrated circuits (ICs) is one of the key technologies for developing high-resolution LCDs. The bonding pitch between LCD and tape carrier package (TCP), which influences the total reliability of LCD modules, depends on the characteristics and bonding conditions of ACF used. So, the bonding process between TCP and a glass panel with ACF using a high-power diode laser as a heat source for curing is preliminarily tested in this experiment. Also, laser transient thermal simulation was performed to analyze the thermal response of the assembly process for a package using ACF. The temperature on the ACF layer goes up to 180 degC (ACF curing temperature) within 1 s after exposure to laser light. This paper reports an effective bonding method using a diode laser, which accomplishes a fine-pitch ACF bonding and determines the optimum ACF bonding condition effectively  相似文献   

18.
Flip chip joining technology using anisotropically conductive films (ACFs) has become an attractive technique for electronic packaging. However, several factors have hindered the wide spread use of this technology. Along with the reliability issue, these factors also include the low availability and high cost of the bumped wafers. This paper introduces the feasibilities of using unbumped die with respect to ACF joints for flip-chip-on-flex (FCOF) assemblies. The unbumped dies contain only bare aluminum pads. Untill now the performance of ACF to Al metallization is a controversial issue from the published reports. In this study, two different test vehicles were used to study contact resistance and adhesion performance. Reliability of contact resistance for ACF joints with the unbumped dies was investigated in terms of varying the thickness of the Al pads. Adhesion performance of ACF to the Al metallization was compared with the adhesion performance of ACF to a glass substrate using the same ACF and the same bonding parameters.FCOF assemblies containing dies with thinner aluminum pads showed lower initial contact resistance and a lower rate of increment during accelerated aging tests. Three factors were considered as the potential causes for the above results: (1) lower concentration of aluminum oxide on the thin Al pad, (2) larger contact area per deformed particle with Au/Ni/Cu electrode for the interconnection of thin Al pad and (3) lower concentration of the defects in the thin Al pad. Contact resistance was found to increase during accelerated testing because of aluminum oxide formation on top of the pads.Contrary to the usual expectation, adhesion strength of ACF with the Al metallization was increased during 60 °C/95% RH testing. After 500 h of such moisture-soak testing, the adhesion strength becomes 3 times the initial value. The change in chemical state on the aluminum surface is considered to be responsible for higher adhesion strength. It is proposed that oxidation of Al surface due to diffused moisture and the new chemical bond formation at the adhesives/aluminum interface are the key reasons for good adhesion reliability.  相似文献   

19.
The effect of bonding pressure on the electrical and mechanical properties of anisotropic conductive film (ACF) joint using nickel particles and metal-coated polymer ball-filled ACFs was investigated. The contact resistance decreases as the bonding pressure increases. Contact resistance of ACF is determined by the contact area change between particles and contact substrates. Electrical conduction through the pressure engaged contact area between conductive particles and conductor substrates is the main conduction mechanism in ACF interconnection. In addition, environmental effects on contact resistance and adhesion strength such as thermal aging, high temperature/humidity aging and temperature cycling were also investigated. Interestingly, the contact resistances of the excessively bonded samples deteriorated more than those of optimally bonded ones. Increasing contact resistance and decreasing adhesion strength after harsh environmental tests were mainly due to the loss of contact by thermal stress effect and moisture absorption, and also partially due to the formation of metal oxide on the conductive particles  相似文献   

20.
This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260/spl deg/C, while there is no opening when the peak temperature is 210/spl deg/C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号