首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Effect of Dilution and Contaminants on Sand Grouted with Colloidal Silica   总被引:1,自引:0,他引:1  
Colloidal silica is a low-viscosity chemical grout. Samples of grouted sand were made by pouring sand into liquid grout in molds, with the grout diluted to concentrations ranging from 5 to 27% silica by weight. The unconfined compressive strength of the grouted sand, measured after 7 days, was proportional to the silica concentration, up to a maximum of 400 kPa. The hydraulic conductivity of the grouted sand decreased with increasing silica concentration in a nearly log-linear manner down to a minimum of 2 × 10?9 cm∕s, and was below 1 × 10?7cm∕s for grouts with 7.4% silica or more. Inclusion of 5% volumetric saturation of organics (tetrachloroethene, CCl4, or aniline) in the samples had little effect on the strength or hydraulic conductivity. Samples were immersed in test liquids (organics, HCl diluted to pH 3, distilled water saturated with organics, and distilled water control) for up to 1 year. All samples increased in strength except for those immersed in aniline; samples immersed in water saturated with aniline were also weaker than control samples.  相似文献   

2.
Foundry Green Sands as Hydraulic Barriers: Laboratory Study   总被引:2,自引:0,他引:2  
A laboratory testing program was conducted to assess the use of foundry sands from gray iron foundries, typically called green sands, as hydraulic barrier materials. Foundry green sands are mixtures of fine uniform sand, bentonite, and other additives. Specimens of foundry sand were compacted in the laboratory at a variety of water contents and compactive efforts and then permeated in rigid-wall and flexible-wall permeameters to define relationships between hydraulic conductivity, compaction water content, and dry unit weight. Additional tests were conducted to assess how hydraulic conductivity of compacted foundry sand is affected by environmental stresses such as desiccation, freeze-thaw, and chemical permeation. Results of the tests show that the hydraulic conductivity of foundry sand is sensitive to the same variables that affect hydraulic conductivity of compacted clays (i.e., compaction water content, and compactive effort). However, hydraulic conductivities <10?7 cm∕s can be obtained for many foundry sands using a broad range of water contents and compactive efforts, including water contents dry of optimum and at lower compactive effort. The hydraulic conductivity of foundry sand was generally unaffected by freeze-thaw, desiccation, or permeation with 0.1 N salt solution or municipal solid waste leachate, but was incompatible with acetic acid (pH = 3.5). Hydraulic conductivity of foundry sands correlates well with bentonite content and liquid limit, with hydraulic conductivity less than 10?7 cm∕s being achieved for bentonite content ≥6% and∕or liquid limit >20.  相似文献   

3.
Feasibility of Using Coal Fly Ash for Mine Waste Containment   总被引:1,自引:0,他引:1  
This study investigates the feasibility of using coal fly ash and fly ash-bentonite mixtures as a barrier material for mine waste. The hydraulic conductivity of the coal fly ash was measured to be in the order of 2×10?9?m/s when it was permeated with deionized water, and this value decreased significantly when the permeant was switched to acid mine drainage (AMD). The addition of bentonite to coal fly ash lowered the hydraulic conductivity during water permeation but no further significant change was observed upon switching the permeant to AMD. Chemical analyses on the effluent from the hydraulic conductivity tests indicated that heavy metals present in AMD were attenuated and were well below the leachate criteria set by the Ontario Government. X-ray diffraction and scanning electron microscopy analyses results of postpermeation samples showed significant structural differences and formation of secondary minerals after AMD permeation. The results of this study suggest that the addition of 10% bentonite to coal fly ash reduced the hydraulic conductivity of the coal fly ash to less than 1×10?9?m/s and improved the chemical compatibility for mine waste containment.  相似文献   

4.
A comparison of the behavior of uncemented and grouted sands is presented. Four sands (Fontainebleau sand and three types of alluvial deposits of the Seine River) were tested. Specimens of grouted sands were prepared in the laboratory by injection of very fine cement or mineral grouts. An initial series of unconfined uniaxial compression tests and tensile tests was performed to highlight the effect of some key factors (mainly the cement-to-water ratio of the grout and the relative density of the granular skeleton) on the strength of the grouted sands. Subsequent triaxial tests showed that when a soil is impregnated by either a very fine cement grout or a mineral grout, both stiffness (secant stiffness or small-strain stiffness) and strength of the soil improve. Similar trends were observed for the behavior of both uncemented and grouted sands. The behavior of grouted sands can be roughly reproduced by applying a linear elastic, perfectly plastic model with a nonassociated Mohr–Coulomb yield criterion whose parameters can be easily determined. Finally, preliminary recommendations are proposed relative to improvements ratios of the parameters of this simple constitutive model that is still commonly used in geotechnical engineering.  相似文献   

5.
Factors affecting the strength, modulus, stress-strain, and time-to-failure relationships of moist-cured silicate-grouted sands were investigated from short-term and creep tests. Variables included in the short-term tests were curing time, sand gradation and mineralogy, rate of loading, curing time, and confining pressure. Confining pressure was varied up to 550 kPa, and the stress and strain loading rates were varied from 0.05 to 5.0 Pa∕min and from 0.01 to 1.0%∕min, respectively. The shear strength and failure strain of moist-cured grouted sands were independent of the confining pressure, but they were affected by all other variables investigated. Compressive failure strains for silicate-grouted sands were less than 0.4% and the limitation in improving the compressive strength of sand has been quantified. Grouted limestone sand had the highest strength. The creep behavior of grouted sand was also investigated. Stress-strain and time-to-failure relationships for grouted sands have been developed.  相似文献   

6.
Stabilization of Organic Soils with Fly Ash   总被引:4,自引:0,他引:4  
The effectiveness of fly ash use in the stabilization of organic soils and the factors that are likely to affect the degree of stabilization were studied. Unconfined compression and resilient modulus tests were conducted on organic soil–fly ash mixtures and untreated soil specimens. The unconfined compressive strength of organic soils can be increased using fly ash, but the amount of increase depends on the type of soil and characteristics of the fly ash. Resilient moduli of the slightly organic and organic soils can also be significantly improved. The increases in strength and stiffness are attributed primarily to cementing caused by pozzolanic reactions, although the reduction in water content resulting from the addition of dry fly ash solid also contributes to strength gain. The pozzolonic effect appears to diminish as the water content decreases. The significant characteristics of fly ash that affect the increase in unconfined compressive strength and resilient modulus include CaO content and CaO/SiO2 ratio [or CaO/(SiO2+Al2O3) ratio]. Soil organic content is a detrimental characteristic for stabilization. Increase in organic content of soil indicates that strength of the soil–fly ash mixture decreases exponentially. For most of the soil–fly ash mixtures tested, unconfined compressive strength and resilient modulus increased when fly ash percentage was increased.  相似文献   

7.
This project was conducted to evaluate the performance and leaching of controlled low strength materials (CLSM) incorporating fly ash and foundry sand. Two different CLSM (or flowable slurry) reference mixtures (equivalent to available production CLSM mixtures) were proportioned for unconfined compressive strength levels in the range of 0.3–0.7 MPa (50–100 psi), at 28 days, using two sources of ASTM Class F fly ash. For each reference mixture, other mixtures were proportioned using two sources of foundry sand (molten metal-casting mold sand) as a replacement for fly ash in the range of 30–85%. The ingredients of the slurry mixtures—fly ash, clean foundry sand, and used foundry sand—were tested for their physical and chemical properties and their leachate characteristics. Portland cement used as the primary binder was also tested for its properties. All CLSM mixtures made with and without foundry sand were evaluated for settlement, setting and hardening characteristics, compressive strength, permeability, and leachate characteristics. The leachate results of these CLSM-making materials were below the enforcement standards (ES) of the Wisconsin Department of Natural Resources (WDNR) ground-water quality standards (GWQS). They also met practically all the parameters of the drinking water standards. A number of CLSM mixtures incorporating fly ash and foundry sand are recommended for construction applications.  相似文献   

8.
Hydraulic Conductivity and Leachate Characteristics of Stabilized Fly Ash   总被引:2,自引:0,他引:2  
Disposal of fly ash on land amounts to sacrificing precious land space. Recycling of fly ash is one of the methods of solving the disposal problem. Stabilization of a low lime fly ash with lime and gypsum was studied through large scale tests on the stabilized material designed to simulate field recycling conditions as closely as possible, and found to be a very effective means to control hydraulic conductivity and leachate characteristics. The effects of moulding water content, lime content, gypsum content, curing period, and flow period on hydraulic conductivity, and on leachate of metals flowing out of the stabilized fly ash are reported herein. With proper proportioning of the mix, and adequate curing, the values of hydraulic conductivity on the order of 10?7 cm∕s were achieved. The concentrations of As, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn in the effluent emanating from the hydraulic conductivity specimens of mixes with higher proportions of lime or lime and gypsum were below threshold limits acceptable for contaminants flowing into ground water.  相似文献   

9.
Strength Characteristics of Class F Fly Ash Modified with Lime and Gypsum   总被引:3,自引:0,他引:3  
This paper presents the shear strength characteristics of a low lime class F fly ash modified with lime alone or in combination with gypsum. Unconfined compression tests were conducted for both unsoaked and soaked specimens cured up to 90 days. Addition of a small percentage of gypsum (0.5 and 1.0%) along with lime (4–10%) enhanced the shear strength of modified fly ash within short curing periods (7 and 28 days). The gain in unsoaked unconfined compressive strength (qu) of the fly ash was 2,853 and 3,567% at 28 and 90 days curing, respectively, for addition of 10% lime along with 1% gypsum to the fly ash. The effect of 24?h soaking showed reduction of qu varying from 30 to 2% depending on mix proportions and curing period. Unconsolidated undrained triaxial tests with pore-pressure measurements were conducted for 7 and 28 days cured specimens. The cohesion of the Class F fly ash increased up to 3,150% with addition of 10% lime along with 1% gypsum to the fly ash and cured for 28 days. The modified fly ash shows the values of Skempton’s pore-pressure parameter, Af similar to that of over consolidated soils. The effects of lime content, gypsum content, and curing period on the shear strength parameters of the fly ash are highlighted herein. Empirical relationships are proposed to estimate the design parameters like deviatoric stress at failure, and cohesion of the modified fly ash. Thus, this modified fly ash with considerable shear strength may find potential use in civil engineering construction fields.  相似文献   

10.
Flexible-wall permeability tests and rigid-wall consolidation/permeability tests were performed to evaluate the hydraulic conductivity and compressibility of a model soil-bentonite (SB) backfill amended with granular activated carbon (GAC) or powdered activated carbon (PAC). The tests were performed as part of an assessment of enhanced SB backfill with improved attenuation capacity for greater longevity of barrier containment performance. Backfill specimens containing fine sand, 5.8% sodium bentonite, and GAC or PAC (0, 2, 5, and 10% by dry weight) were prepared to target slumps of 125±12.5?mm. Hydraulic conductivity (k) and compressibility of backfill test specimens were measured in consolidometers as a function of effective stress, σ′ (24 ? σ′ ? 1,532?kPa), whereas flexible-wall k was measured for backfill specimens consolidated to σ′ = 34.5?kPa. The results indicate that addition of GAC has little impact on the hydraulic and consolidation properties of the backfill, whereas addition of PAC causes a decrease in k and consolidation coefficient (cv) and a slight increase in compression index (Cc). Differences in behavior between GAC-amended backfills and PAC-amended backfills are attributed primarily to differences in GAC and PAC particle size.  相似文献   

11.
Migration of non-aqueous-phase liquids (NAPLs) such as trichloroethylene or gasoline can be controlled by barrier systems. The research presented in this paper aims to form a horizontal layer by injecting gelling liquids and to test the ability of horizontal barriers to isolate the downward migration of NAPLs in subsurface environments. We developed a methodology in the laboratory to form a contiguous horizontal barrier by injecting gelling liquids through horizontal and vertical wells. A series of batch, column, and 2D sandbox experiments were conducted to investigate the gel development and horizontal barrier formation. Prior to 2D barrier formation experiments, two different methods were employed to measure pre- and postinjection hydraulic conductivity in 1D columns to quantify hydraulic conductivity reductions. After an impervious grout formed, the durability of the grouted porous media in the presence of two NAPL contaminants was investigated. The hydraulic conductivity of filter sand treated with colloidal silica was reduced by 100% in 1D column experiments. In 2D experiments, a contiguous horizontal layer was formed by horizontal or vertical injection of the gelling liquid. The grouted material in 1D columns worked well in controlling the downward migration of contaminants. Although some penetration of the gelled layer by the contaminant was observed, the integrity of the horizontal layer was preserved. Finally, based on scaled capillary pressure versus saturation relationships, it was determined that capillary pressures can reduce as much as 50% with gelling of the colloidal silica solutions.  相似文献   

12.
Hydraulic Conductivity of MSW in Landfills   总被引:1,自引:0,他引:1  
This paper presents a laboratory investigation of hydraulic conductivity of municipal solid waste (MSW) in landfills and provides a comparative assessment of measured hydraulic conductivity values with those reported in the literature based on laboratory and field studies. A series of laboratory tests was conducted using shredded fresh and landfilled MSW from the Orchard Hills landfill (Illinois, United States) using two different small-scale and large-scale rigid-wall permeameters and a small-scale triaxial permeameter. Fresh waste was collected from the working phase, while the landfilled waste was exhumed from a borehole in a landfill cell subjected to leachate recirculation for approximately 1.5 years. The hydraulic conductivity tests conducted on fresh MSW using small-scale rigid-wall permeameter resulted in a range of hydraulic conductivity 2.8×10?3–11.8×10?3?cm/s with dry unit weight varied in a narrow range between 3.9–5.1?kN/m3. The landfilled MSW tested using the same permeameter produced results between 0.6×10?3–3.0×10?3?cm/s for 4.5–5.5?kN/m3 dry unit weights. The hydraulic conductivity obtained from large-scale rigid-wall permeameter tests decreased with the increase in normal stress for both fresh and landfilled waste. The hydraulic conductivity for fresh MSW ranged from 0.2 cm/s for 4.1?kN/m3 dry unit weight (under zero vertical stress) and then decreased to 4.9×10?5?cm/s for 13.3?kN/m3 dry unit weight (under the maximum applied normal stress of 276 kPa). The hydraulic conductivity of the landfilled MSW decreased from 0.2 cm/s to 7.8×10?5?cm/s when the dry unit weight increased from 3.2 to 9.6?kN/m3. The results clearly demonstrated that the hydraulic conductivity of MSW can be significantly influenced by vertical stress and it is mainly attributed to the increase in density leading to low void ratio. In small-scale triaxial permeameter, when the confining pressure was increased from 69 to 276 kPa the hydraulic conductivity decreased from approximately 10?4?to?10?6?cm/s, which is much lower than those determined from rigid-wall permeameter tests. The published field MSW hydraulic conductivities are found to be higher than the laboratory results. Landfilled MSW possesses lower hydraulic conductivity than fresh MSW due to increased finer particles resulting from degradation. The decreasing hydraulic conductivity with increasing dry unit weight is expressed by an exponential decay function.  相似文献   

13.
X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy-dispersive spectroscopy studies were performed with molding sand and sugar industry fly ash to evaluate and compare their physical properties. We noted that several physical properties of sugar industry fly ash and molding sand were similar. We then tested the permeability, green compression strength and dry compression strength of various compositions of sugar industry fly ash and bentonite to explore their potential as an alternative to molding sand, thereby reducing the dependency on the latter, as well as to suggest an effective way for disposal of fly ash from sugar industry. We also found that quality aluminium castings could be produced using fly ash, which effectively replaced 24% of molding sand in the foundry, thereby reducing the cost of production and increasing the surface finish of castings.  相似文献   

14.
The analysis of steep slope and cliff stability in variably cemented sands poses a significant practical challenge as routine analyses tend to underestimate the actually observed stability of existing slopes. The presented research evaluates how the degree of cementation controls the evolution of steep sand slopes and shows that the detailed slope geometry is important in determining the characteristics of the failure mode, which in turn, guide the selection of an appropriate stability analysis method. Detailed slope-profile cross sections derived from terrestrial lidar surveying of otherwise inaccessible cemented sand cliffs are used to investigate failure modes in weakly cemented [unconfined compressive strength (UCS)<30?kPa] and moderately cemented (30相似文献   

15.
Engineering Properties of Sand-Fiber Mixtures for Road Construction   总被引:4,自引:0,他引:4  
The purpose of this investigation was to identify and quantify the effect of numerous variables on the performance of fiber-stabilized sand specimens. Laboratory unconfined compression tests were conducted on sand specimens reinforced with randomly oriented discrete fibers to isolate the effect of each variable on the performance of the fiber-reinforced material. Five primary conclusions were obtained from this investigation. First, the inclusion of randomly oriented discrete fibers significantly improved the unconfined compressive strength of sands. Second, an optimum fiber length of 51 mm (2 in.) was identified for the reinforcement of sand specimens. Third, a maximum performance was achieved at a fiber dosage rate between 0.6 and 1.0% dry weight. Fourth, specimen performance was enhanced in both wet and dry of optimum conditions. Finally, the inclusion of up to 8% of silt does not affect the performance of the fiber reinforcement.  相似文献   

16.
This paper investigates the effect of time on the shear strength and the permeability of fly ash, a major solid by-product of thermoelectric power plants. Direct shear tests using Mikasa's apparatus, conventional permeability tests, and consolidation tests were conducted on two silt-size fly ashes, with low free lime contents, obtained from two different power plants. The results show that the immediate settling of both fly ashes takes place in a short period of time during consolidation and does not change with time. The rate of increase in shear strength with time is different depending on the pozzolanic reactions taking place for the two ashes. The permeability tests under constant stresses of 49 and 98 kPa for 12 days show that the coefficient of permeability for the tested ashes is between 10?6 and 10?7 m∕s. During this period the coefficient of permeability either remains constant (for the case of the ash with a lower free lime content) or is slightly reduced (for the ash with a higher free lime content). The practical implications and the limitations of using low lime silt-size fly ash in vertical drains in the stabilization of soft ground are also discussed.  相似文献   

17.
This study presents the results of a detailed geotechnical evaluation of six stabilized dredged material (SDM) blends incorporating various combinations of lime, cement kiln dust, high alkali and slag cements, and Class F fly ash. The dredged material classified as CH/OH soil with an in situ moisture content (MC) of approximately 130% and void ratio of 3.35. Mix designs and unconfined compression strength tests were completed for each SDM blend based on 3-day mellowing characteristics. Compacted dry densities were on the order of 7.8–11.2?kN/m3 (49–71?lb/ft3), with MCs on the order of 34–73%. Peak effective friction angles ranged from 20–50° with cohesion intercepts on the order of 30–235 kPa (4–34?lb/in.2) using a maximum stress obiliquity criterion. Postpeak effective friction angles (15% axial strain) were routinely in excess of 40° with low cohesion (<40?kPa; 6?lb/in.2). One sample exhibited very strong soil-fabric effects (cohesion) having an effective friction angle of only approximately 9°, but cohesion on the order of 450 kPa (65?lb/in.2). Negligible consolidation of a 28-day cured sample was measured. Also, contrary to expectations based on the high sulfate contents (10,000–30,000 mg/kg) of the SDM blends, negligible swell (<1%) was measured in five of six SDM blends. The main finding of this research is the SDM blends exhibit the strength, compressibility, and bulking characteristics that make them favorable for large fill applications and subgrade improvement applications at costs equivalent to or less than conventional construction materials.  相似文献   

18.
Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.  相似文献   

19.
Effect of Fly Ash on Engineering Properties of Expansive Soils   总被引:8,自引:0,他引:8  
This note presents a study of the efficacy of fly ash as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil. The plasticity, hydraulic conductivity and swelling properties of the blends decreased and the dry unit weight and strength increased with an increase in fly ash content. The resistance to penetration of the blends increased significantly with an increase in fly ash content for a given water content. Excellent correlation was obtained between the measured and predicted undrained shear strengths.  相似文献   

20.
A field study was conducted to determine if the field hydraulic conductivity of barrier layers constructed with foundry green sand is comparable to the hydraulic conductivity measured in the laboratory on laboratory-compacted specimens normally used for testing during design. Three test pads were constructed with foundry green sand. Their field hydraulic conductivity was measured using sealed double ring infiltrometers, two-stage borehole permeameters, and on large block specimens. Additional field hydraulic conductivity tests were conducted on the test pads after exposure to winter weather causing freeze-thaw cycling and summer weather causing desiccation. The field hydraulic conductivity data followed the same trends with bentonite content and liquid limit observed in the laboratory. When the bentonite content is greater than 6% (by weight), the plasticity index is greater than 3, or the liquid limit is greater than 20, the hydraulic conductivity is less than 10?7?cm/s. Testing after winter exposure showed that the field hydraulic conductivity was unaffected by winter weather, even though the test pads underwent up to six freeze-thaw cycles (depending on depth). Similarly, exposing the test pads to summer weather had no measurable effect on the field hydraulic conductivity. The field study validated that foundry sand is a useful industrial by-product that can be beneficially used as a hydraulic barrier material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号