首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonconventional on-board charger for electric vehicle propulsionbatteries   总被引:1,自引:0,他引:1  
Electric vehicles (EVs) are needed in densely populated urban areas to reduce air pollution. Battery chargers are needed to supply DC voltage to charge the high-energy battery parks used in EVs. This paper deals with an on-board battery charger arrangement that is fully based on the use of the power components of the EV motor drive. Desired features for EV battery chargers such as minimum volume, low cost, high efficiency, and high reliability are fully matched by means of the proposed solution. The proposed on-board charger arrangement has been installed on an electric scooter prototype being developed for the Far East markets. Design analysis and experimental results of the on-board charger prototype are presented  相似文献   

2.
Distributed power supply systems are an attractive solution to meeting the requirements (redundancy, modularity, battery backup, etc.) for the next generation of power supply systems. In addition, the normalization regarding power factor and total harmonic distortion (THD) makes it necessary to include power factor correction in the input stage in such architectures. This paper presents a novel approach of an integrated battery charger/discharger which offers power factor correction and battery galvanic isolation in a simple structure. Placing the battery in the primary side overcomes the need of galvanic isolation integration in each of the DC/DC on-board power converters when this topology is used as part of a distributed power supply system  相似文献   

3.
电动汽车用充电器与驱动器一体化拓扑研究   总被引:1,自引:0,他引:1       下载免费PDF全文
摘要:针对电动汽车驱动与充电系统分离所带来的诸多问题,提出了一种电动汽车驱动和充电系统一体化电力电子拓扑结构及相应控制策略, 该拓扑正向工作时驱动电机为电动状态、反向工作时给蓄电池充电为充电状态。一体化拓扑在充电时共用驱动系统的主电路和控制电路,无需额外增加AC/DC和DC/DC充电器,提高了功率密度、降低了产品成本、降低了系统故障率、减少了安装空间等,解决了传统电动汽车驱动与充电分离带来的问题。最后针对提出的一体化拓扑和控制策略进行了实验验证,试验中所采用电机型号为80CB050C,结果表明该一体化拓扑在充电实验时直流母线电压纹波在6.9%附近,经过Buck电路中电机绕组进一步滤波后,充电电压及电流纹波基本稳定在0.3%以内,验证了所提方法的正确性和可行性,具有一定的应用前景和实用价值。  相似文献   

4.
Hybrid electric vehicle (HEV) technology provides an effective solution for achieving higher fuel economy, better performance, and lower emissions, compared with conventional vehicles. Plug-in HEVs (PHEVs) are HEVs with plug-in capabilities and provide a more all-electric range; hence, PHEVs improve fuel economy and reduce emissions even more. PHEVs have a battery pack of high energy density and can run solely on electric power for a given range. The battery pack can be recharged by a neighborhood outlet. In this paper, a novel integrated bidirectional AC/DC charger and DC/DC converter (henceforth, the integrated converter) for PHEVs and hybrid/plug-in-hybrid conversions is proposed. The integrated converter is able to function as an AC/DC battery charger and to transfer electrical energy between the battery pack and the high-voltage bus of the electric traction system. It is shown that the integrated converter has a reduced number of high-current inductors and current transducers and has provided fault-current tolerance in PHEV conversion.  相似文献   

5.
Design of multiple-input power converter for hybrid vehicles   总被引:1,自引:0,他引:1  
This paper deals with designing and sizing of a multiple-input power electronic converter (MIPEC) to be used in an electric vehicle propulsion system that includes a fuel cell (FC) generator and a combined storage unit. The combined storage unit is composed by an ultracapacitors tank (UC) and a battery unit (BU). MIPEC is responsible for power-flow management on-board the vehicle for each mode of operation. Specifications for MIPEC designing come out from many considerations concerning traction drive and reference driving cycle, on-board power source and storage unit characteristics. However, to date sizing and configuration of both storage units and on-board generators are directly related to traction drive and driving profile (i.e., vehicle performances and characteristics) and no relation with power electronic interface is considered during preliminary design. Then, power electronic interface is selected in order to fit traction drive requirements with power source and storage unit characteristics; as a consequence converter mode of operation lacks of optimization, as well dynamic behavior and efficiency cannot be maximized. In this paper, MIPEC design and power source and storage unit selection are achieved at the same project stage according to traction drive requirements. Experimental results on 60-kW power electronic interface are presented.  相似文献   

6.
Single winding self-driven synchronous rectification (SWSDSR) approach is a new driving circuit that overcomes the limitations of the traditional driving schemes, becoming an interesting alternative to supply new electronic loads such as microprocessors. Traditional self-driven synchronous rectification (SDSR) technique has shown very good performance to improve efficiency and thermal management in low-voltage low-power DC/DC converters, however it can not be extended to the new fast dynamic, very low voltage applications. SWSDSR scheme is based on an additional winding in the power transformer (auxiliary winding). It allows for maintaining the synchronous rectifiers (SRs,) on even when the voltage in the transformer is zero, which is impossible to do in traditional self-driven approaches. It also makes it possible to drive properly the SRs even in very low voltage applications, 1.5 V or less. Coupling of the windings strongly affects the performance of the SWSDSR technique. The influence of the coupling between the different windings is analyzed through simulations of different transformers designed for the same application. Models of transformers are generated with a finite element analysis (FEA) tool. Goodness of the SWSDSR scheme is validated through experimental results  相似文献   

7.
This work presents a novel highly efficient and low-stress battery charger with a resonant switch converter—based on resonance and zero-voltage-transition soft-switching theory—that reduces defects associated with high voltage and high current stresses caused by the resonance of traditional resonant circuits. The novel battery charger meets the requirement that all circuit components must operate with zero-voltage switching. Experimental test results indicate that the proposed battery charger reduces the temperature of an active power switch, and switching losses are less than those obtained using a traditional pulsewidth-modulation converter as a battery charger.   相似文献   

8.
A bidirectional DC-DC converter topology for low power application   总被引:3,自引:0,他引:3  
This paper presents a bidirectional DC-DC converter for use in low power applications. The proposed topology is based on a half-bridge on the primary and a current-fed push-pull on the secondary side of a high frequency isolation transformer. Achieving bidirectional flow of power using the same power components provides a simple, efficient and galvanically isolated topology that is specially attractive for use in battery charge/discharge circuits in DC UPS. The DC mains (provided by the AC mains), when presented, powers the down stream load converters and the bidirectional converter which essentially operates in the buck mode to charge the battery to a nominal value of 48 V. On failure of the DC mains (derived from the AC mains), the converter operation is comparable to that of a boost and the battery regulates the bus voltage and thereby provides power to the downstream converters. Small signal and steady state analyses are presented for this specific application. The design of a laboratory prototype is included. Experimental results from the prototype, under different operating conditions, validate and evaluate the proposed topology. An efficiency of 86.6% is achieved in the battery charging mode and 90% when the battery provides load power. The converter exhibits good transient response under load variations and switchover from one mode of operation to another  相似文献   

9.
A single-stage power-factor-corrected AC/DC converter   总被引:1,自引:0,他引:1  
This paper presents a single-stage isolated converter topology designed to achieve a regulated DC output voltage having no low-frequency components and a high-input power factor. The topology is derived from the basic two-switch forward converter, but incorporates an additional transformer winding, inductor and a few diodes. The proposed circuit inherently forces the input current to be discontinuous and AC modulated to achieve high-input power factor. The converter output is operated in discontinuous mode to minimize the bulk capacitor voltage variations when the output load is varied. Analysis of the converter is presented, and performance characteristics are given. Design guidelines to select critical components of the circuit are presented. Experimental results on a 150 W 50 kHz universal input (90-265 V) 54.75 V output AC/DC converter are given which confirm the predicted performance of the proposed topology  相似文献   

10.
设计了一个具有充放电功能的锂电池充电器,充电电路采用数字控制的Buck变换器,放电电路采用高效率的集成Boost变换器。充电器采用DC/DC拓扑结合脉冲充电控制的充电方案。系统以集成了多种外围模块的PIC16F883单片机作为控制核心,控制电路简洁有效,具备对锂离子电池进行过充、过放和过温保护的功能。  相似文献   

11.
In order to reduce the volume, weight and cost of conventional hybrid energy storage system (HESS) while properly exploring the complementary features of different energy storage devices for DC microgrid applications, this paper proposes a multiple-port three-level DC/DC converter. It possesses multiple ports sharing one front-end three-level DC/DC converter with an inductor and supercapacitor bank. Different types of batteries and/or multiple battery banks can be interfaced through the multiple terminals. Such a converter structure facilitates the cooperation of different energy storage devices to satisfy various power demands of DC microgrids with intermittent renewable generation plants. Moreover, the proposed structure allows power sharing among different energy storage devices, which enables more efficient cooperation of different battery banks or different types of batteries. Experimental results are presented to verify the efficacy of the proposed converter structure and its control.  相似文献   

12.
The aim of this paper is to study the performance of an AC/DC converter with low output voltage and low input current harmonic content. In order to obtain low output voltages with a high efficiency, synchronous rectification is mandatory. When the output voltage is low, it is very difficult to use self-driven synchronous rectification and additional windings are used to properly drive the metal oxide semiconductor field effect transmitters (MOSFETs). Besides this, IEC 1000-3-2 regulations impose low input current harmonic contents for power levels higher than 75 W. In this paper, a recently proposed synchronous rectification scheme is combined with a modified input current shaper to design a 100 W, 3.3 V AC/DC converter that complies with IEC 1000-3-2 regulations. The efficiency obtained in the prototype was very high for this application (86%) and both the size increase and the cost increase were quite low in comparison with the original topology with no synchronous rectification and no IEC 1000-3-2 compliance.  相似文献   

13.
A flyback-type of a transformer-coupled DC/DC power converter supplies a train of current pulses to charge an energy-storage capacitor to a desired high voltage, converting input DC power obtained from a lower voltage DC source. The energy-storage capacitor is charged to a specified voltage within a specified time with minimum peak and RMS currents in the transistor, the rectifier diode, the transformer windings and the DC power source, minimizing the i2R losses. This is done by generating: (1) energy-storage current pulses in the power transistor and the transformer primary winding in which the current increment from the beginning to the end of a pulse is only a small fraction of the final (peak) value; and (2) energy-delivery flyback current pulses in the capacitor and the transformer secondary winding in which the current decrement from the beginning to the end of a pulse is only a small fraction of the initial (peak) value. Recommended methods are: (1) hysteretic current-mode control with current sensing in both transformer windings; (2) peak-current-commanding current-mode control with switching frequency or transistor-nonconducting time varying in a prescribed way during the charging; or (3) valley-current-commanding current-mode control with switching frequency or transistor-conducting time varying in a prescribed way during the charging. Compared with one nonoptimal method, peak currents are reduced by a factor of about 2 and i2R power losses are reduced by a factor of about 1.33  相似文献   

14.
This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50–420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50–125, 125–250 and 250–420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.  相似文献   

15.
通信电源及分布式电源主要由前级高频整流器、中间级电池组和后级DC/DC变换器组成。DC/DC变换器的输入部分通常采用大功率Boost变换器,以将前级与中间级的直流电压提升至一定的幅度,从而更方便地形成所需提供给负载的各种电压。IntelCPU广泛用于IT工业,其对电源的要求越来越严格,需要提供更低的电压、更大的电流及更快的动态响应。为了改进Buck类型电压调整模块(Voltage Regulator Module,简称VRM)的动态响应要求,广泛使用多相交错并联技术,以实现快速的动态响应且极大地降低输出电流纹波。文章以一个大功率的四相交错并联Boost变换器作为设计实例,详细说明了其工作原理及主要器件的设计与选用;论证了该项技术用于BoostDC/DC变换器的多种优点,从而证明了多相交错并联技术的先进性和实用性。  相似文献   

16.
陈浩  郭利进  李辉 《电子科技》2012,25(11):79-81
为提高电动汽车铅酸蓄电池寿命和续航能力,实现蓄电池高效、快速充电,设计了一种智能充电系统。硬件采用DC/DC正激变换电路实现功率的转换,同时以单片机为智能控制核心,并利用DS18B20采集电池温度。软件上根据蓄电池快速充电原理,提出一种分阶段定电流和正负脉冲相结合的新型充电控制策略。利用模块化设计方法,完成各功能模块设计,以及利用数字 PI算法实现分阶段电流恒定。实验证明,采用新型控制策略的智能充电系统对蓄电池进行充电,减少了充电时间,提高了充电效率。  相似文献   

17.
提出一种基于电流控制的最大功率点跟踪方法用于光伏太阳能充电器,以DC/DC变换器中的Boost电路作为开关充电器,系统由一个光伏电池模块、一个基于Boost变换器开关电池充电器和电池组成.采用光伏电池输出电流控制实现系统的最大功率点跟踪,调整占空比,从而使太阳电池阵列输出功率最大,以输出稳定的电压对蓄电池进行充电,可以提高蓄电池使用寿命,有效地提高独立光伏系统的综合效率,降低整个系统的成本.  相似文献   

18.
A high-performance single-phase online uninterruptible power supply (UPS) is proposed. The UPS is composed of a three-leg-type converter which operates as a battery charger and an inverter. The first leg is controlled to charge the battery, and the third leg is controlled to make the output voltage. The common leg is controlled in line frequency. The charger and the inverter are controlled independently. The charger has the capability of power-factor correction while charging a battery. The inverter regulates output voltage and limits output current under an impulsive load. The three-leg-type converter reduces the number of switching devices. As a result, the system has less power loss and a low-cost structure. In the determination of the charger voltage, the nominal voltage is derived using the feedback linearization concept and then a perturbed voltage is determined for the reactive power control. The disturbance of input voltage is detected using a fast sensing technique of the input voltage. Experimental results obtained with a 3-VA prototype show a normal efficiency of over 87% and an input power factor of over 99%.  相似文献   

19.
Piezoelectric transformers (PTs) provide several advantages compared to magnetic components, which are higher power density, lower radiated noise, and higher voltage isolation capability. PT must be properly designed to benefit the power converter with the aforementioned advantages. Analytical models are widely used for PT design in order to validate it before constructing the prototype. In this paper, the additional usefulness of finite element analysis (FEA) for PT design is shown. With FEA, it is possible to optimize the PT design not only by maximizing the energy transference but also by cleaning the working frequency range of spurious modes (geometrical 2D/3D effects). Moreover, FEA tools allow the study of other main aspects of the PT design such as manufacturing tolerances or the influence of the fixing layer on PT performance (which is a critical design point). A method for modeling and designing PTs is proposed, combining analytical 1D models and FEA results. The proposed method is validated with measurements of a PT design for a 10-W ac/dc converter prototype for mobile phone battery charger.  相似文献   

20.
The main considerations in the design of a single-switch-per-phase converter for a switched reluctance motor (SRM) drive are described, with particular attention given to the choice of converter topology, the type of switching devices, the normalized rating of the power devices, and input filter design. The converter uses MOSFET switches. Experimental verification is included with a 6/4 pole personal-computer-controlled prototype SRM drive  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号