首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A series of segmented polyurethanes based on hydroxylterminated polybutadienes (HTPBD) and their hydrogenated derivatives (HYPBD) has been synthesized. Thermal, mechanical, and spectroscopic studies were carried out over a wide temperature range to elucidate the structure-property relationships existing in these polymers. Both thermal and dynamic mechanical response showed a soft segment Tg at ?74°C for the unsaturated polyurethanes and at ?69°C for the hydrogenated samples. In addition, two hard segment transitions are observed by differential scanning calorimetry (DSC) at 40 and 75°C and a softening region by thermal mechanical analysis (TMA) at 190°C. The low Tg, very close to that of the free HTPBD and HYPBD and independent of hard segment content, indicated that these polymers were well phase separated. Results of infrared analysis revealed that at room temperature, 90-95 percent of the urethane N-H groups formed hydrogen bonds. Since hydrogen bonding resides only within the hard segment domain in these butadiene-containing polyurethanes the extent of H-bonding served as additional evidence for nearly complete phase segregation. From dynamic mechanical studies, the plateau modulus above the soft segment Tg and stress-strain behavior depended upon the concentration of hard segments. A slight increase in the modulus, a moderate increase in stress (σb), and decrease in elongation accompanied a higher hard segment content. The thermal and mechanical response of these polyurethanes appears to be consistent with behavior observed for other phase segregated systems. Variations in behavior resulting from hydrogenation of the precursor prepolymer are discussed.  相似文献   

2.
The thermal transition behavior of a series of hydroxy terminated polybutadiene (HTPBD) containing segmented polyurethanes has been studied by differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA). Four transition regions are observed; the soft segment Tg, at ?74°C, two hard segment transitions T1, at 40°C and T2 at 103°C and a softening region by TMA at 180°C, presumed to arise from the dissociation of allophonate bonding, The low Tg, only 7°C higher than the Tg of free HTPBD, indicates nearly complete phase segregation despite the amorphous nature of the hard segment structure. The dependence of T1, on hard segment length and thermal cycling suggests that it represents domains consisting primarily of shorter hard segments units. Factors contributing to the rather low mechanical properties of HTPBD polyurethanes are also discussed.  相似文献   

3.
A series of HTPBD containing polyurethanes of high molecular weight have been synthesized in solution. The value of the soft segment Tg is very close to that of the free HTPBD and independent of hard segment content indicating complete or very nearly complete phase segregation. Since the hard segments of TDI/BDO are amorphous, the driving force for phase segregation must arise from the large degree of incompatibility between the polar hard segment and nonpolar soft segment. Furthermore, in these samples there is also no opportunity for hydrogen bonding between hard and soft segments to enhance compatibility.The values of the hard segment glass transition increase with the average hard segment length following a Fox-Flory type relationship. In contrast to the segment Tg observed in bulk polymerized samples, only a single hard segment Tg occurred in the present study. This indicates that the double Tg behaviour is a result of the heterogeneous nature of the bulk polymerization.With increasing hard segment content, the properties vary from soft to rigid elastomers, and rubber roughened plastics. This variation in properties is caused by changes in the sample morphology which depends upon the relative fractions of hard and soft segments. Mechanical properties show marked improvement over the corresponding bulk polymerized samples. Unlike polyester and polyether urethanes, these materials evidence no change in the soft segment Tg following thermal treatment and no effect of thermal history on the mechanical properties.  相似文献   

4.
Segmented poly(ether-b-urethanes) have been synthesized with 2000 MW polypropylene oxide coupled with diisocyanates and diol type chain extenders. The diisocyanates used were symmetric rigid 4, 4′-diphenylmethane diisocyanate (MDI), linear aliphatic hexamethylene diisocyanate (HDI), and unsymmetric rigid toluene-2, 4-diisocyanate (TDI). The chain extenders were symmetric N, N′-bis(2-hydroxyethyl) terephthalamide (BT) and N, N′-bis(2-hydroxyethyl)-hydroquinone (BH) unsymmetric N, N′-bis(2-hydroxyethyl)isophthalamide, and linear aliphatic 1, 4-butanediol (B). Hard segment contents ranged from 20 to 40 wt percent. The thermal behavior of these materials is consistent with phase separation into separate hard and soft domains, In order of increasing temperature above the soft segment Tg, there are transitions which occur in the regions ?56 to ?36°C (Ta), 70 to 90°C (Tb), and 138 to 168°C (Tm). The former is probably associated with soft segment change from a viscoelastic to an elastomeric state. Values of Ta are ~ ?51 C and ?56°C for the MDI-BT and HDI-BT polymers, respectively, and are independent of hard segment content. Microscopy showed that the former polymers have spherulitic morphology, so these materials have good microphase separation and exhibit crosslinked elastomeric properties. The TDI-BT or BI and MDI-B polyurethane have composition-independent Ta values of ?41 and ?36°C, respectively. These materials probably have considerable “domain-bound-ary-mixing”. At low hard segment content the MDI-B polymers behave as non-crosslinked elastomers. Only the MDI-BI polymers have Ta values, which are strongly affected by composition, increasing in magnitude with increasing of hard segment content. This is interpreted as significant “mixing-in-domains” and is supported by morphology observed by microscopy. The next higher transition, Tb, probably involves dissociation of interdomain hydrogen bonding. In the case of the MDI-BT polyurethanes, the spherulites associated with the hard domains had disappeared at 141°C and the few small spherulites in the MDI-BI polymers disappeared at 130°C. The Tb values are 70, 83 to 90, and 100°C for the MDI-B, HDI-BT, and HDI-BI polymers, respectively. The melting transitions occurred between 138 to 168°C for the various polyurethanes except for the MDI-BT systems which decompose before melting. Thermal decomposition is a two-stage process. Hard segments decompose between 200 and 300°C. The initial decomposition temperatures are lowered in the presence of strong acid. Soft segments decompose at higher temperatures. The mechanical properties of the MDI-BI polyurethanes are charateristic of crosslinked elastomer, the results of which will be presented in a subsequent paper.  相似文献   

5.
Linear polyurethaneimide elastomers (PUI) were obtained from polyether- or polyester-diols, diphenylmethane diisocyanate or bitolylene diisocyanate and pyromellitic acid dianhydride. It was found that these polymers have considerably better mechanical properties than typical linear polyurethanes (PU). The elastic modulus and stress at break increase with contents of the hard polyimide segments. The softening temperatures and thermal stability of the PUI at 500°C were higher than the ones of PU with similar hard segment contents. Electric properties of PUI were close to the ones of conventional PU. It was shown that cellular PUI had considerably lower dielectric constant. Tg's of the soft segments PUI were less than Tg's corresponding to PU. It is connected with greater phase separation of the hard imide segments from the soft polyether– or polyester–urethane matrix.  相似文献   

6.
Segmented polyurethanes containing soft segments with lower molecular weight exhibit shape-memorizing properties. Structure and properties of shape-memorizing polyurethanes (S-PUs) were studied. S-PUs are characterized by a rather high glass transition temperature: Tg of S-PUs is usually in the range of 10–50°C. A Pplot of 1/Tm against–In XA is approximately linear, indicating that the hard segments are randomly distributed along the molecular chain. S-PUs with a hard segment of 67–80 mole % form negative spheruiites; they give a faint scattering maximum in a small-angle X-ray diffraction pattern. On the other hand, S-PUs with a hard segment of 50 mole % form fine birefringent elements, giving diffuse scattering in its SAXD pattern. A cyclic test of an S-PUs above Tg indicates that the residual strain increases and the recovery strain decreases with increasing cycle and maximum strain. It has been suggested by dynamic mechanical investigation that the shape-memorizing property of the S-PUs may be ascribed to the molecular motion of the amorphous soft segments. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Thermal relaxation transitions of toluene diisocyanate (TDI)-based polyurethanes (PU) were characterized by the thermally stimulated current (TSC) technique with verification data from the relaxation mapping analysis (RMA) measurement. TDI-based PU elastomers with poly(propylene glycols) (PPG) as the soft segment and methylene-bis-orthochloroaniline (MOCA) as the hardener, showed three relaxation transitions, (1) a subglass transition (Tg) of the terminal groups occurred near −135°C; (2) the Tg; and (3) a global transition occurred above the Tg (assigned as Tglobal transition). The temperature of Tg of PU as expected was varied by the chain length and attributed by the motion of an urethanic chain dominated by the soft segment and may also associate in the cooperative movement with the hard segment. The Tglobal transition appearing above the Tg was identified and attributed to the global transition in the macromolecule scale and was supported by the tangent plot of the dynamic mechanical analyzer (DMA) measurement. The TSC measurement on thermal characteristic transitions of TDI-based PU provided a whole range of thermal transitions including a sub-Tg, the Tg (observed by DSC) to a global transition (may be observed by DMA) with the ease of sample preparation in one single measurement. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 527–545, 1999  相似文献   

8.
The complex shear moduli of the segmented polyurethane Estane 5703p, Livermore explosive (LX)‐14, and plastic bonded explosive (PBX)‐9501, which use this polymer as a binder, have been investigated. Segmented polyurethanes, such as Estane 5703, contain microphase‐separated hard segments in a rubbery matrix of soft segments. LX‐14 is composed of 95.5% 1,3,5,7‐tetranitroazacyclooctane (HMX) explosive with 4.5% Estane 5703 binder. PBX‐9501 is composed of 94.9% HMX, 2.5% Estane 5703p binder, 2.5% nitroplasticizer (NP), and about 0.1% antioxidant Irganox 1010. In the temperature range from ?150 to 120°C, two relaxations were observed as peaks in the loss modulus and tangent delta in Estane 5703p and LX‐14. A third relaxation was found in PBX‐9501. The low temperature relaxation associated with vitrification of the poly(ester urethane) soft segment occurred in the shear loss modulus (G″) at ?29 and ?26°C in Estane and LX‐14, respectively, at 1 Hz. In PBX‐9501 the Estane soft segment glass transition peak, Tg(SS), in the loss modulus occurred at ?40 ± 3°C at 1 Hz. The reduction in soft segment glass transition in PBX‐9501 is clear evidence of plasticization of the soft segment by NP. The apparent activation energy of the maximum in the loss modulus for LX‐14 and PBX‐9501 over the frequency range from 0.1 to 10 Hz was 230 kJ/mole (55 kcal/mole). The hard segment glass transition, Tg(HS), was observed as a peak in the loss modulus at about 70°C. In LX‐14 the transition was observed at lower temperatures (56–58°C at 1 Hz) depending on thermal history. There was a low temperature shoulder on the Tg(HS) of Estane 5703 associated with soft segment crystallinity. Modulated differential scanning calorimetry (MDSC) was used to verify the Tg(HS) in Estane and 50/50 mixtures of Estane with NP. In PBX‐9501 the hard segment glass transition occurred between 65 and 72°C. The presence of NP in PBX‐9501 gave rise to a new transition, Teu(NP), between 8 and 15°C. This peak is believed to be associated with the eutectic melting of the plasticizer. Returns of fielded PBX‐9501 that were 6 and 11 years old were also measured. Small variations in Tg(SS) and the rubber plateau modulus were observed in these aged samples, consistent with migration of plasticizer and/or very low levels of chain scission. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1009–1024, 2002  相似文献   

9.
A series of biodegradable polylactide‐based polyurethanes (PLAUs) were synthesized using PLA diol (Mn = 3200) as soft segment, 4,4′‐diphenylmethane diisocyanate (MDI), 2,4‐toluene diisocyanate (TDI), and isophorone diisocyanate (IPDI) as hard segment, and 1,4‐butanediol as chain extender. The structures and properties of these PLAUs were studied using infrared spectroscopy, differential scanning calorimetry, tensile testing, and thermomechanical analysis. Among them, the MDI‐based PLAU has the highest Tg, maximum tensile strength, and restoration force, the TDI‐based PLAU has the lowest Tg, and the IPDI‐based PLAU has the highest tensile modulus and elongation at break. They are all amorphous. The shape recovery of the three PLAUs is almost complete in a tensile elongation of 150% or a twofold compression. They can keep their temporary shape easily at room temperature (20 °C). More importantly, they can deform and recover at a temperature below their Tg values. Therefore, by selecting the appropriate hard segment and adjusting the ratio of hard to soft segments, they can meet different practical demands for shape memory medical devices. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
Novel type of mesogenic chain extenders used in this study are N,N′‐bis(4‐hydroxyphenyl)‐3,4,3′,4′‐biphenyldicarboxyimide (BPDI) and N,N′‐bis[4‐(6‐hydroxyhexyloxy) phenyl]‐3,4,3′,4′‐biphenyldicarboxyimide (BHDI). BHDI has a flexible spacer of 6‐methylene units but BPDI does not. The liquid crystalline polyurethane elastomers were synthesized from BPDI or BHDI as a mesogenic chain extender, 4,4′‐diphenylmethane diisocyanate, and poly(oxytetramethylene)glycol (MW 1000) as a soft segment. Polyurethane based on BHDI exhibited two melting transitions. However, any melting behavior was not shown in the BPDI‐based polyurethanes because of higher melting temperature than decomposition temperature. The composition of polyurethanes was varied as a means of manipulating liquid crystalline behavior and physical properties. The BHDI‐based polyurethanes containing above 50 wt % of hard segment content exhibited nematic liquid crystal behaviors. As the hard segment content of the BHDI‐based polyurethanes increased, the glass transition temperature (Tg), strength, modulus, and the amount of hydrogen bonding increased. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 577–585, 2000  相似文献   

11.
Poly(ethylene glycol) (PEG)-based sulfonated polyurethanes bearing either sulfonated soft segments (SSSPU) or sulfonated hard segments (SHSPU) were synthesized using sulfonated monomers. Differential scanning calorimetry (DSC) revealed that sulfonate anions either in the soft segments or hard segments both increased the glass transition temperatures (Tg’s) of the soft segments and suppressed their crystallization. Moreover, dynamic mechanical analysis (DMA) and tensile analysis demonstrated that SSSPU possessed a higher modulus and tensile strength relative to SHSPU. Fourier transform infrared (FTIR) spectroscopy revealed that hydrogen bonding interactions in SHSPU were suppressed compared to SSSPU and noncharged PU. This observation suggested a high level of phase-mixing for SHSPU. In addition, atomic force microscopy (AFM) phase images revealed that both SSSPU and noncharged PU formed well-defined microphase-separated morphologies, where the hard segments phase-separated into needle-like hard domains at the nanoscale. However, SHSPU showed a phase-mixed morphology, which was attributed to increased compatibility of polar PEG soft segments with sulfonated ionic hard segments and disruption of hydrogen bonds in the hard segment. The phase-mixed morphology of SHSPU was further demonstrated using small angle X-ray scattering (SAXS), which showed a featureless X-ray scattering profile. In contrast, SAXS profiles of SSSPU and noncharged PU demonstrated microphase-separated morphologies. Moreover, SSSPU also displayed a broad ionomer peak ranging in q = 1–2 nm?1, which resulted from the sodium sulfonate ion pair association in the polar PEG soft phase. Morphologies of sulfonated polyurethanes correlated well with thermal and mechanical properties.  相似文献   

12.
The dynamic viscoelastic properties and thermal transition behavior of reaction injection molding (RIM) and cast polyurethane—isocyanurate elastomers have been studied as a function of various segments (soft and hard urethane, and hard isocyanurate) content. RIM and cast elastomers were prepared at different concentrations of soft and hard urethane, and hard isocyanurate segments. RIM elastomers with the higher isocyanate index (lower hard urethane and greater isocyanurate segment content) displayed an unchanged Tg (glass transition temperature of soft segment) and increasing Tgh (glass transition temperature of hard segment) related to the hard urethane and isocyanurate segments. This is due to the phase separation between the soft and the hard segments. Cast elastomers synthesized from the higher amount of 1,4-butanediol (greater hard urethane and less hard isocyanurate segment content) showed an increasing Tgs, decreasing Tgh of hard urethane segments, and an unchanged Tgh of isocyanurate segments. This is related to the phase mixing between the soft and the hard urethane segments and the phase separation of hard isocyanurate and hard urethane segments.  相似文献   

13.
Investigations of morphological changes which are induced in segmented elastomers by annealing and quenching are reported. Four different polymers were studied each based on the same soft segment—1000 or 2000 molecular weight poly(tetramethylene oxide). The hard segments were 4,4′-diphenylmethane diisocyanate (MDI) chain extended with 1,4-butane diol (ET series), piperazine coupled with 1,4-butane diol bischloroformate (BN-1,4), or dimethyl terephthalate condensed with 1,4-butane diol (H-50). Following annealing at various temperatures (120, 150, 170, or 190°C), the polymers were quenched to ambient conditions, and their properties measured by differential scanning calorimetry (DSC) as a function of time following the quench. DSC measurements taken immediately after the quench show that the soft segment Tg is higher than that of the control, suggesting that the applied thermal history promoted increased mixing of hard and soft segments. As time passes after quenching, the Tg values decrease and approach an equilibrium value. This effect is much smaller for those samples having crystalline hard segments. Endotherms attributed to the disruption of long range ordering in the hard segment domains resulted from the annealing process. These endotherms appeared at higher temperatures for higher annealing temperatures. The positions of crystalline melting endotherms were independent of the annealing/quenching conditions investigated.  相似文献   

14.
The dynamic mechanical properties of polyester and polyether urethane block polymers have been investigated at four frequencies (3.5, 11, 35 and 110 Hz) in the temperature range of — 150 to 200°C. The existence of a two phase structure was demonstrated in these systems by the observation of two major transition regions corresponding to (1) the glass transition temperature (Tg) of the ester or ether soft segments, and to (2) the softening temperature of the aromatic-urethane hard segments. Several secondary relaxations were observed in addition to the two major relaxations. It was possible to assign molecular mechanisms to each of these relaxations. All relaxation phenomena were greatly influenced by the molecular weight of the prepolymer, weight percent of hard segments, and thermal history. An increase in the molecular weight of the prepolymer above 1,000 at constant hard segment content resulted in a semi-crystalline material, which possessed a lower Tg for the macroglycol segments. Annealing to enhance crystallinity increased the Tg of the soft segments, consistent with the usual observation in semicrystalline homopolymers. These findings suggest that the relaxation mechanisms of polyurethane block polymers are not only influenced by the degree of crystallinity, but also by the nature of the domain structure.  相似文献   

15.
Prior studies of two series of segmented polyurethanes based on 2, 4 toluene cliisocyanate (2, 4 TDI) or 2, 8 TDI, butanediol, and a 1000 molecular weight polytetramethyleneoxide (PTMO-1000) soft segment revealed a rapid increase in soft segment glass transition temperature (Tg) with increasing urethane content in the 2, 4 TDI series. The change in Tg couldbe correlated with estimates of hard segment-soft segment phase mixing obtained by infrared analysis of the urethane NH and carbonyl bands. In the present paper, the infrared data have been reevaluated using improved procedures for resolving the carbonyl band into H-bonded and nonbonded components, and the relation between the estimated extent of phase mixing and Tg has been reexamined. The transition behavior in an extensive series of related polymers has also been determined, including 2, 4 TDI arid 2, 6 TDI samples with PTMO2000 as well as polybutyleneadipate (PBA-1000 and PBA-2000) soft segments. The results indicate the effectiveness, of increased soft segment molecular weight in promoting phase segregation, imply that much greater phase mixing occurs in polyester than polyether samples, suggest that anchoring the ends of the soft segments has only a small effect on Tg, and provide some evidence that H-bonding not only increases Tg but can also impede soft segment crystallization.  相似文献   

16.
Polyurethanes (PU) with suitable soft segments have been found to be good blood-compatible polymers and have attracted much attention recently. In this study, various molar amounts of 4,4′-methylene bisphenyl isocyanate reacted with poly(tetramethylene oxide) were synthesized to explore the optimal ratio of hard/soft segments for cell attachment and proliferation in in vitro systems. Differential scanning calorimetry and dynamic mechanical analysis were used to determine the physical properties, hydrogen bonding index (HBI) and transmission electron microscopy to observe the phase-separation phenomena in the materials, and 3T3 fibroblast to evaluate the dependence of the cell proliferation at 37°C on the material properties. Our results show that cell attachment and proliferation are closely related to the cell growth surface, which in turn is controlled by (1) the ratio of hard to total segment concentration and (2) the recrystallization temperature (Tc) of PU. To obtain a good cell growth surface, the ratio of hard to total segment concentration is found to be between 0.4 and 0.6, and HBI is between 1.5 and 2.1. Furthermore, when the Tc of PU is near the physiology temperature, a stable surface for cell growth can be provided. The shorter molecules in the soft segment region can rearrange the molecular chain at 37°C.  相似文献   

17.
Hydroxypropyl lignin-based thermosetting polyurethanes were synthesized with excess hexamethylene diisocyanate (HDI) and tolylene diisocyanate (TDI) by solution casting. Four polyethylene glycols (PEG) of molecular weight 400, 600, 1000, and 4000 were mixed with lignin polyol to incorporate different proportions of soft segment into the network prior to crosslinking. Neither thermal nor mechanical and limited small angle x-ray scattering (SAXS) analysis provided distinct evidence for phase separation and microstructure formation. The study examines the effect of the soft segment in relation to chain length and weight contribution on the thermal and mechanical properties of the final networks. A significant sensitivity of glass transition temperature (Tg), of swelling in DMF, and of the mechanical properties to soft segment content was observed. Some of this sensitivity must, however, be attributed to differences in crosslink density since the polyol to diisocyanate weight ratio was kept constant throughout the synthesis series. The magnitude of the change of the different properties was found to be influenced by both glycol content and glycol molecular weight. The Tg of the network decreased from 105°C to as low as 38°C (HDI), and from 158°C to 70°C (TDI), with incorporation of up to 17.8% glycol, and it was greater with lower molecular weight glycols than with higher ones at any weight fraction. Swelling in DMF increased as expected with soft segment content. Mechanical properties were affected most if HDI and lower molecular weight glycols were used. The uniformity in structure, reduction in brittleness, and considerable improvement in mechanical properties with inclusion of minor PEG contents indicates that lignin-based network polyurethanes can be synthesized with controllable performance characteristics.  相似文献   

18.
A series of water‐borne polyurethanes (WPUs) with different soft segments, various COOH contents, and various hard segment contents were prepared through a prepolymerization process. Thermal and crystalline properties of their films were studied by the measurement of differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and thermogravimetry (TG), respectively. Two Tg areas in DSC of WPUs with polyethylene‐butylene adipate glycol (PEBA) as the soft segment were found; an endothermic peak at ~ 33°C was also found with polyhexane neopentyl adipate glycol (HNA) as the soft segment. The DSC of WPUs with the mixture of PEBA/HNA as soft segment was investigated to show similarity to those from HNA, but with a relatively smaller endothermic peak at ~ 34°C. Three sharp diffraction peaks at 2θ = 20.50°, 21.72°, and 24.54° in XRD of water‐borne PUs from HNA were found to indicate the crystallization of soft segments, which was disrupted by the addition of polyacrylate (PA), as evidenced by the amorphous shoulder at ~ 2θ = 20°. TG analysis and differential thermogravimetric (DTG) analysis were measured to indicate that the films lost weight in two stages, and the decomposition temperatures of the films depended on the COOH content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1936–1941, 2007  相似文献   

19.
Poly(urethane‐siloxane) copolymers were prepared by copolymerization of OH‐terminated polydimethylsiloxane (PDMS), which was utilized as the soft segment, as well as 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (1,4‐BD), which were both hard segments. These copolymers exhibited almost complete phase separation between soft and hard segments, giving rise to a very simple material structure in this investigation. The thermal behavior of the amorphous hard segment of the copolymer with 62.3% hard‐segment content was examined by differential scanning calorimetry (DSC). Both the T1 temperature and the magnitude of the T1 endotherm increased linearly with the logarithmic annealing time at an annealing temperature of 100°C. The typical enthalpy of relaxation was attributed to the physical aging of the amorphous hard segment. The T1 endotherm shifted to high temperature until it merged with the T2 endotherm as the annealing temperature increased. Following annealing at 170°C for various periods, the DSC curves presented two endothermic regions. The first endotherm assigned as T2 was the result of the enthalpy relaxation of the hard segment. The second endothermic peak (T3) was caused by the hard‐segment crystal. The exothermic curves at an annealing temperature of above 150°C exhibited an exotherm caused by the T3 microcrystalline growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5174–5183, 2006  相似文献   

20.
Phase Behavior and Mechanical Properties of Siloxane-Urethane Copolymer   总被引:1,自引:1,他引:1  
Two series of siloxane-urethane copolymers were prepared from polydimethylsiloxane (PDMS) with a molecular weight of 1000 or 1800 which was used as a soft segment, 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (1,4-BD). Differential scanning calorimetry (DSC) demonstrated that the position (Tgs) and breadth (ΔB) of soft-segment glass transition of copolymers remained constant as the hard-segment content increased. Heat capacities at soft-segment glass transition of the copolymer (ΔCp) were 0.195∼0.411 J/gC and heat capacities of pure PDMS (ΔCp0) were 0.571∼0.647 J/gC, leading to the various ΔCp/ΔCp0 ratios. The ΔCp/ΔCp0 ratios decreased as the increasing of hard-segment content, showing poor phase separation. The FTIR spectrum confirmed the occurrence of hydrogen bonding in ether end-group of pure PDMS. The ether group of the soft segment led to interfacial mixing between soft and hard segments. The tan δ of the soft segment determined by dynamic mechanical testing (DMA) also identified the mixing of soft and hard segments. The mechanical properties of the copolymer were directly related to either the soft and hard segment contents or the chain lengths of soft and hard segments. The hard segment that reinforced the soft segment and interfacial thickness between soft and hard segment dominated the mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号