首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以发动机4000r/min、节气门开度35%为试验工况,对纯汽油及不同掺混体积分数丙酮-丁醇-乙醇(acetone-butanol-ethanol,ABE)与汽油混合物开展了不同点火提前角和喷油量的试验研究。分析了不同ABE混合比、点火提前角和过量空气系数对发动机性能的影响,并对每种燃料发动机最大功率工况的性能参数进行了比较。结果表明:点火提前角和过量空气系数相同时,混合燃料中ABE含量越高,燃油流量越大,发动机功率越大,有效热效率越高;燃油流量的总热量增大和热-功转换效率提高是促使发动机功率增大的主要原因;随ABE掺混比增加,NO比排放明显降低,CO比排放略有增加,碳氢化合物比排放先增后减。浓混合气工况增加ABE含量比在当量空燃比状态下增加ABE含量,发动机的有效热效率增大更明显,发动机的NO比排放降低更加明显。研究表明高速汽油机掺混ABE燃料具有较好的应用前景。  相似文献   

2.
The engine performance impact of soybean oil ethyl ester blending into diesel fuel was analyzed employing heat release analysis, in-cylinder exergy balances and dynamometric tests. Blends with concentrations of up to 30% of soybean oil ethyl ester in volume were used in steady-state experiments conducted in a high speed turbocharged direct injection engine. Modifications in fuel heat value, fuel-air equivalence ratio and combustion temperature were found to govern the impact resulting from the addition of biodiesel on engine performance. For the analyzed fuels, the 20% biodiesel blend presented the best results of brake thermal efficiency, while the 10% biodiesel blend presented the best results of brake power and sfc (specific fuel consumption). In relation to mineral diesel and in full load conditions, an average increase of 4.16% was observed in brake thermal efficiency with B20 blend. In the same conditions, an average gain of 1.15% in brake power and a reduction of 1.73% in sfc was observed with B10 blend.  相似文献   

3.
以某石化公司为例,对加氢裂化装置应用高压绕管式换热器和往复式压缩机气量无级调节系统(HydroCOM),并对高压空冷器进行改造,实现装置节能进行总结.高压绕管式换热器具有占地面积小,换热效率高,换热面积大,制造成本低等特点,相应节省燃料消耗,降低设备制造费用.装置设计能耗为45.39kg标油/t,实际标定能耗为36.77kg标油/t,仅为设计值的81%.按照同比例折算后,每年节约燃料费用1569.9万元.气量无级调节系统投用后,往复式压缩机的轴功率随加工负荷的降低而降低,低负荷运行时,功率消耗明显下降,且100%满负荷运行时,相比投用HydroCOM系统前,电流下降约30A,每小时节电约300kW.h,也能起到节能作用.针对该加氢裂化装置夏季高压空冷器冷后温度偏高问题进行改造:采用升力系数大、升阻比高的新一代HY高效叶片;将摩擦传动改为同步传动.改造后冷后温度下降3~4C,循环氢压缩机汽耗下降0.5t/h,且投资回收期只需4个月.  相似文献   

4.
The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO2, NO and O2.It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.  相似文献   

5.
This paper deals with the compact chamber engine in which a bowl‐like space in the piston or head of the cylinder is added to cause swirling of the air–fuel mixture. This causes a change in performance from the conventional spark ignition engine. In this work, the operating variables considered are the engine speed, equivalence ratio, inlet pressure and temperature and exhaust pressure. A computer program is specially devised to calculate performance at design and off design operation conditions. The compact chamber achieves an increase in volumetric efficiency of 5%. The brake efficiency is 28.5%, whereas for conventional SI engine is 23%, with an increase of 20%. The brake power for the compact chamber engine is 39 kW, whereas for the conventional engine is 35 kW, an increase of 10%. Hence, the reduction in the brake‐specific fuel consumption is about 20%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
High power density, stoichiometric, turbocharged, directly injected engines with water injection and a three way catalytic converter after treatment have been proposed as one of the most promising H2ICE [1]. These throttle controlled engines have top brake efficiencies exceeding 40%, but large penalties in efficiency reducing the load with 1 bar BMEP values approaching 10%. Recovery of the large amount of fuel energy lost in the coolant especially at low loads as well as the fuel energy lost in the exhaust that is significant at high loads and speeds may push not only the top brake efficiencies to exceed the 45% mark, but also to dramatically increase the low load efficiency compromised by the throttling. In this paper, recovery of the waste heat from the exhaust gases and the coolant in a H2ICE is performed with Organic Rankine Cycles (ORC). The engine without ORC has a maximum efficiency of 42% and an average efficiency over the map points of 32.7%. With the exhaust ORC, neglecting the possible back pressure increase due to the heat exchanger downstream of the catalytic converter the maximum efficiency increases to 45.6%, and the average efficiency rises to 35.3%. With the coolant ORC, neglecting the reduced mechanical efficiency for the coolant back pressure increment, the maximum efficiency increases to 43.4% and the average efficiency increases to 34.6%. Finally, combining the two ORC with same assumptions, the maximum efficiency increases to 46.9% and the average efficiency to 38%.  相似文献   

7.
The subject of this analysis is a novel hybrid steam Rankine cycle, which was designed to drive a conventional open-compressor chiller, but is equally applicable to power generation. Steam is to be generated by the use of solar energy collected at about 100°C, and is then to be superheated to about 600°C in a fossil-fuel fired superheater. The steam is to drive a novel counter-rotating turbine, and most of its exhaust heat is regenerated. A comprehensive computer program developed to analyze the operation and performance of the basic power cycle is described. Each component was defined by a separate subroutine which computes its realistic off-design performance from basic principles. Detailed predicted performance maps of the turbine and the basic power cycle were obtained as a function of turbine speed, inlet pressure, inlet temperature, condensing temperature, steam mass flow rate, and the superheater's fuel consumption rate. Some of the major conclusions are: (1) the turbine's efficiency is quite constant, varying in the range of 68.5–76.5 per cent (75 per cent at design) for all conditions, (2) the efficiency of the basic power cycle is 18.3 per cent at design, more than double as compared to organic fluid cycles operating at similar solar input temperatures, at the expense of adding only 20 per cent non-solar energy. This, combined with the fact that actual organic Rankine cycles operate typically at temperatures above 140°C, predicts that this system would be economically superior by using less than half of the collector area and by also using less expensive collectors.  相似文献   

8.
开展了柴油机燃用柴油/二甲氧基甲烷混合燃料的性能与排放研究。研究结果表明,随着燃料中二甲氧基甲烷掺混比例的增加,有效燃油消耗率有所增加,但折算成当量柴油的有效燃油消耗率降低,有效热效率增加。在同一工况下,发动机排气碳烟随二甲氧基甲烷的加入而降低,NOχ则无明显的上升;CO排放也随着二甲氧基甲烷的增加而降低。  相似文献   

9.
In this paper, a dual-fuel engine test rig with gasoline injected in the intake port and gasoline (or hydrogen) injected directly into the cylinder is built up; therefore, two injection models are realized. One is port fuel injection + gasoline direct injection (PFI + GDI), the other is port fuel injection + hydrogen direct injection (PFI + HDI). And the effects of two injection models on heat and exergy balance are investigated experimentally. The results show that, from the perspective of the first law of thermodynamics (heat balance), no matter what the injection mode is, the heat proportion of cooling water is the largest, the exhaust heat ratio and brake power are the second, which two are roughly equivalent, and the uncounted loss is the least. In PFI + GDI mode, the local mixture is too dense due to the increase of mixing ratio, which leads to insufficient combustion and a slight decrease of brake power ratio. However, due to the special characteristics of hydrogen, the increase of direct injection ratio improves the brake power ratio in PFI + HDI mode. Moreover, because of the short quenching distance of hydrogen, the cooling loss rises up with the increase of hydrogen ratio. The engine speed and load also have great impacts on heat distribution, but on account of the different physical and chemical properties between gasoline and hydrogen, resulting in varying degrees of impact and trends. On the basis of the second law of thermodynamics (exergy balance), it is found that no matter what injection mode is, the ratio of exergy destruction is always the highest, accounting for half of the total fuel energy, and the exhaust exergy ratio is lower than the brake power ratio. However, the proportion of exergy contained in cooling water is the smallest, which is quite different from the result of the first law of thermodynamics. The influences of several factors on engine energy balance are analyzed, and the differences and similarities between heat balance and exergy balance are compared. The two analytical methods are interrelated and complementary, and the purpose is to find a reasonable and comprehensive energy balance analysis method for internal combustion engine.  相似文献   

10.
Diesel engines have proved its utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NOx from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO2 (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 °C considering the BTE, BSEC and gaseous emissions.  相似文献   

11.
柴油机燃用柴油/水煤浆混合燃料性能与排放研究   总被引:2,自引:0,他引:2  
对柴油机燃用柴油/水煤浆混合燃料进行了试验研究,结果表明:与柴油相比,使用混合燃料后柴油机多数工况的有效热效率下降;燃料消耗率有所增加,但折算成当量柴油消耗率基本降低;NO_x排放明显下降,最低为原机的20%;CO和HC排放有所上升,但仍能满足排放标准。  相似文献   

12.
在丰田8A型汽油机上开展了汽油/二甲氧基甲烷(DMM)含氧混合燃料的性能与排放特性研究,得到了不同节气门开度、转速和负荷下的发动机性能和排放参数,为在汽油机上使用含氧燃料提供了试验依据。研究结果表明:在相同平均有效压力下混合燃料的燃油消耗率有所增加,但折算成当量汽油的燃油消耗率下降,热效率提高。CO和HC排放随混舍燃料中含氧量的增加而降低,但NOx排放变化不大。  相似文献   

13.
Recently, various alternatives to batteries, such as microfabricated fuel cell systems, have been proposed for portable power generation. In large-scale power production plants emphasis is placed on energy conversion efficiency. On the other hand, the intrinsic design objective for portable power generation devices is the energy density, i.e., the electrical energy generated from a given mass or volume of device and fuel cartridge. It is plausible to stipulate that an increase in the energy conversion efficiency of a system leads to an increase in energy density, but we demonstrate through theoretical analysis and case studies that the two metrics are not equivalent. In some cases, such as systems with a combination of fuels, maximizing efficiency leads to drastically different design, operation and performance than maximizing energy density. Another interesting observation is that, due to interaction between components, maximal component efficiency does not always imply maximal system efficiency.  相似文献   

14.
An assessment of the potential for solar energy applications within U.K. industry has been made, using a disaggregated breakdown of energy consumption in the eight industrial sectors by fuel and end-use, and taking account of solar collector performance under U.K. climatic conditions. Solar contributions of 35 per cent of process boiler heat up to a temperature of 80°C and 10 per cent in the 80–120°C range are considered feasible, along with 35 per cent of non-industrial water heating. After employing energy conservation techniques currently more cost-effective than solar systems, an additional 3.5 per cent of U.K. primary energy expended in manufacturing industry (excluding iron and steel production) could be contributed by solar. This represents 1 per cent of the U.K. national primary energy demand. Improvements in collector efficiency, less costly interseasonal energy storage systems, and the changing pattern of U.K. industry could increase this percentage considerably.  相似文献   

15.
Traditional optimization-based energy management strategies (EMSs) do not consider the uncertainty of driving cycle induced by the change of traffic conditions, this paper proposes a robust online EMS (ROEMS) for fuel cell hybrid electric vehicles (FCHEV) to handle the uncertain driving cycles. The energy consumption model of the FCHEV is built by considering the power loss of fuel cell, battery, electric motor, and brake. An offline linear programming-based method is proposed to produce the benchmark solution. The ROEMS instantaneously minimizes the equivalent power of fuel cell and battery, where an equivalent efficiency of battery is defined as the efficiency of hydrogen energy transforming to battery energy. To control the state of charge of battery, two control coefficients are introduced to adjust the power of battery in objective function. Another penalty coefficient is used to amend the power of fuel cell, which reduces the load change of fuel cell so as to slow the degradation of fuel cell. The simulation results indicate that ROEMS has good performance in both fuel economy and load change control of fuel cell. The most important advantage of ROEMS is its robustness and adaptivity, because it almost produces the optimal solution without changing the control parameters when driving cycles are changed.  相似文献   

16.
茂名加氢裂化装置用能分析及节能途径   总被引:1,自引:0,他引:1  
邓茂广 《中外能源》2008,13(1):110-115
介绍了茂名石化公司加氢裂化装置在国内同类装置中的能耗状况,从设计和操作两方面分析了影响该装置能耗的因素,提出了该装置节能降耗应采取的措施,即使用炉管清灰剂和原料油阻垢剂技术降低燃料能耗;优化生产操作,降低分馏塔负荷;对中低温热源优化回收利用;对烟气热量进行回收;进行电耗分析并采取相应节电措施。通过改造,分馏炉燃料消耗降低0.2kg标油/t,加热炉燃料气单耗降低6.4kg/t,锅炉排烟温度降到200℃以下,自产蒸汽量增加了4.6t/h,锅炉平均热效率上升4.8个百分点,装置综合能耗由2004年的68kg标油/t降低到目前的37kg标油/t。  相似文献   

17.
The turbocharged Diesel engine is the most efficient engine now in production for transport applications with full load brake engine thermal efficiencies up to 40-45% and reduced penalties in brake engine thermal efficiencies reducing the load. The secrets of the turbocharged Diesel engine performances are the high compression ratio and the lean bulk combustion mostly diffusion controlled in addition to the better use of the exhaust energy. Despite these advantages and the further complications of hydrogen in terms of abnormal combustion phenomena and displacement effect, the most part of the dual fuel Diesel-hydrogen engines has been developed so far injecting hydrogen in the intake manifold or in the intake port, and then injecting the Diesel fuel in the cylinder to ignite there a homogeneous mixture. This paper shows how a latest production common-rail Diesel engine could be modified replacing the Diesel injector by a double injector as those proposed by Westport since more than two decades for CNG first and then for CNG and hydrogen to provide much better performances. A model is first developed and validated versus extensive high quality dynamometer data for the Diesel engine only covering with almost 200 points the load and speed range. This model replaces the multiple injection strategy with a single equivalent injection for the purposes of the brake efficiency results still providing satisfactory accuracy. The model is then used to simulate the dual fuel operation with a pilot Diesel followed by a main hydrogen injection replacing the Diesel fuel with the hydrogen fuel and using the same parameters for start and duration of the equivalent injection at same percentage load and speed. While the top load air-to-fuel ratio of the Diesel is a lean 1.55, the top air-to-fuel ratio of the hydrogen is assumed to be a stoichiometric 1. Within the validity of these assumptions it is shown that the novel engine has better than Diesel fuel conversion efficiencies and higher than Diesel power outputs. These results clearly indicate the development of the direct injection system as the key factor where to focus research and development for this kind of engines.  相似文献   

18.
开展了柴油机燃用柴油/二甲氧基甲烷混合燃料的燃烧特性研究,为含氧燃料的使用和研究提供理论与试验依据。研究结果表明,在相同平均有效压力(pRMEP)和转速下,随着燃料中二甲氧基甲烷掺混比例(含氧量)的增加,放热率峰值增加,放热率曲线型心向上止点偏移,预混燃烧比例增加而扩散燃烧比例减小,燃烧过程等容度提高,发动机当量柴油的有效燃油消耗率降低,缸内气体最高平均温度无明显升高。柴油中添加DMM对主燃烧时间影响不大,但总燃烧时间变短。  相似文献   

19.
The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both break power and efficiency.  相似文献   

20.
In this paper, design strategies for improving electrical efficiency, thermal design and fuel utilization of an ammonia-fed SOFC are investigated. Three strategies are presented to improve system performances: (i) the introduction of an additional stack to distribute the power i.e. power rating, (ii) the evaluation of the anode off gasses recirculation and (iii) the use of the off gasses to operate a cascade stack (re-powering), where the anode flue gas is recuperated. A system design that integrates these new features is modelled with zero-dimension thermodynamic equations. The three strategies were evaluated for net system efficiency and the heat exchanger area as main design parameters. The power rating allows to reduce the heat exchanger surface while the recirculation and repowering are suitable to increase system efficiency. With an integration of the three solutions, it is possible to achieve an increase in net efficiency from 52.1% to 66% and a reduction in heat exchanger surface area of 67% compared to the reference design that does not consider any of the proposed design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号