首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Resistivity and dielectric constant of polyethylene/carbon black compounds were measured from room temperature to 140°C. Within the polyethylene melting region a PTC/NTC (positive followed by negative temperature coefficients) phenomenon is observed, whose intensity depends on the type of carbon black, its concentration and other parameters. Reproducibility of the PTC phenomenon in polyethylene compounds containing a single type of carbon black is rather low. However, by using mixtures of carbon blacks differing appreciably in their particle size, remarkable reproducibility improvements can be achieved. Several other aspects are also discussed in the present paper covering current-voltage relationships in these materials, comparison of PTC curves with DSC thermograms upon heating and cooling, and dielectric constant-temperature relations. The carbon black concentration giving the optimum PTC intensity can be predicted approximately from room temperature data.  相似文献   

2.
The mechanical and rheological properties of high density polyethylene filled with carbon black have been examined. Two sources of carbon black (one commercial and other obtained from a pyrolysis process) and various treatments have been studied. The rheological measurements in the melt state has been performed on a Rheometrics stress rheometer and a capillary rheometer. These materials possess outstanding hardness and toughness showing great potential for structural application. Comparison of carbon black from two sources showed that the carbon from the pyrolysis process has a good potential as a reinforcing agent. It was found that surface treatment reduces the particle-particle interactions and improves the filler dispersion. The relationship between the yield stresses, filler percentage, surface modification by the coupling agents and mechanical properties is discussed.  相似文献   

3.
The electrical resistivity of a radiation-crosslinked polyethylene/carbon black switching composite was investigated as a function of carbon black content and temperature. Carbon blacks of different morphology and microstructure behaved differently regarding the electrical resistivity. A HG black, highly porous and structured, imparts high conductivity to its composite mixture at a low degree of loading, whereas nonporous acetylene EQ black of like structure requires a higher degree of loading to impart the same conductivity. The PTC (positive temperature coefficient) effect anomaly was smaller for HG black than for EQ black. It was found that the PTC anomaly was heightened when a combination of the two different carbon blacks was mixed into the composites. Suggestions as to the causes for this particular behavior are made with reference to the electron micrography and other parameters for microstructure of the two carbon blacks.  相似文献   

4.
The electrical resistivity of high‐density polyethylene (HDPE) loaded with carbon black (CB) blends was evaluated as a function of the blending time and the melt index of HDPE. The relationship between the positive temperature coefficient effect and the room temperature volume resistivity was investigated. The positive temperature coefficient effect and reproducibility were improved significantly when the blending time of HDPE and CB was comparatively long. The effects of 60Co γ‐ray and electron beam irradiation on the positive and negative temperature coefficient behavior of the blends were studied. The effect of thermal aging on the volume resistivity was studied to ascertain the structural stability. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2440–2446, 2002  相似文献   

5.
Aggregates of carbon black (CB) in a polymer matrix have a tendency to form a CB network. The dynamic mechanical properties of binary systems of chlorinated polyethylene (CPE) and CB or 3,9‐bis{1,1‐dimethyl‐2[β‐(3‐tert‐butyl‐4‐hydroxy‐5‐methylphenyl)propionyloxy]ethyl}‐2,4,8,10‐tetraoxaspiro[5,5]‐undecane (AO‐80) and their ternary systems were investigated. It was found that the dynamic mechanical properties of those systems depend on the colloidal properties, surface oxides, and surface modification of CB. For binary systems of CPE and CB, oxidized CB gives a high modulus at low strain amplitude and a large Payne effect compared with untreated CB. In contrast, the reverse effect was observed for their ternary systems. Consequently, a good micro‐dispersion is obtainable by surface modification due to physical adsorption of AO‐80 on oxidized CB particles via hydrogen bonds. © 2003 Society of Chemical Industry  相似文献   

6.
Setsuko Isaji  Masaru Matsuo 《Polymer》2009,50(4):1046-1053
Electrical properties of polyethylene and carbon nanotube composite films were investigated, when the composite films were set in heating box or under electric field at constant voltage. The composite films were prepared by gelation/crystallization from dilute solution. The mixture of ultra-high molecular weight polyethylene (UHMWPE) and branched low molecular weight polyethylene (LMWPE) was used as matrix, and multi-walled carbon nanotubes (MWNTs) were used as fillers. The filler content was chosen to be 10 wt% (ca. 5.25 vol%) which is a relatively higher loading than the percolation threshold to ensure to act as heating element in plane heater of composite film. The focus was concentrated on the temperature dependences of electric conductivity by external heating and by exothermic effect concerning self-temperature-control heating properties which were measured for the three kinds of UHMWPE-LMWPE composites with the same content of MWNTs in the composites. When a certain voltage was applied to the composite, the surface temperature of film reaches the equilibrium value within less than 100 s. The maximum surface temperature as the equilibrium state of the resultant composite film can be easily controlled by adjusting the composite ratio represented as UHMWPE/LMWPE. The high efficiency of heating and wide adjustability of stable temperature suggested its good application in high efficient plane heater.  相似文献   

7.
An experimental study has been carried out to prepare and characterize high density polyethylene-based composites filled with exfoliated graphite particles of varied aspect ratios. It has been demonstrated that the dielectric constant of the composite correlates with the in situ volumetric fraction of the compressible exfoliated filler particles. The dielectric constant has been found to range from 2.23 to 125. The minimum electrical resistivity of the composites obtained was 0.1 Ω.cm at a graphite content of 40 percent by volume. The use of these composites is intended in electromagnetic radiation interference (EMI) shielding.  相似文献   

8.
The electrical resistivity and thermal conductivity of a liquid crystalline polymer (LCP) filled with a commercial carbon black (CB) of various volume fractions (?) is investigated. The percolation threshold (?c) is found at about 3%, and the resistivity (ρ) as a function of (? ? ?c) satisfies the exponential function. Although the pure LCP is highly anisotropic in thermal and mechanical properties after processing, the composite samples exhibit no preferential direction for electrical conduction. Samples of ? below ?c exhibit a negative temperature coefficient of resistivity while those above ?c show almost no temperature dependence from room temperature to 200°C. In addition, the samples at lower ? have higher thermal conductivity in the LCP flow direction than those measured in the transverse and thickness directions, and they approach the same value at higher ?. This result indicates that preferential molecular alignment of the matrix LCP is responsible for the behavior of the thermal conductivity of the composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1549–1555, 2001  相似文献   

9.
Electrically conductive silicone rubber composites have been prepared through incorporation of conductive acetylene black and short carbon fibre (SCF). The percolation limit for the attainment of high conductivity is found to be relatively less for silicone rubber based composites compared to EPDM or NBR based composites reported earlier. Percolation limit is found to be lower for SCF-filled systems (7.5 phr) compared to black-filled ones (14 phr). Both black- and SCF-filled systems exhibit an increase in resistivity with the increase in temperature (PCT effect). This PCT effect may be explained in terms of differences in the thermal expansion between the rubber matrix and the conductive filler. However, resistivity-versus-temperature plots are not identical during the heating-cooling cycle, leading to some hysteresis and electrical set. The current-voltage relationship is linear (Ohmic in nature) at room temperature but becomes non-linear (non-Ohmic) at elevated temperatures. The resistivity of these composites is measured under different conditions such as on applying pressure and being subjected to different mechanical stress and strain over the specimens. An effort has been made to correlate the effect of different parameters on electrical resistivity with the change in the conductive network structure under different conditions.  相似文献   

10.
The electrical resistivity of crosslinked high-density polyethylene loaded with conductive blacks and carbon fibers was studied as a function of filler concentration and temperature. A thermoelectric switching phenomenon (a sudden resistivity increase in the vicinity of the polyethylene melting point) in such semicrystalline conductive systems was investigated. Significant switching behavior was exhibited by compounds containing very low concentrations of carbon fibers. Some crosslinked compounds filled with mixtures of carbon black and carbon fibers were also studied.  相似文献   

11.
Carbon black (CB) filled high‐density polyethylene (HDPE) composites are prepared by ordinary blending for use as an electrical conductive polymer composite. The composite changes from an electrical insulator to a conductor as the CB content is increased from 10 to 20 wt %, which is called the percolation region. For explanatory purposes, three models, namely, “conduction via nonohmic contacting chain,” “conduction via ohmic contacting chain,” and a mixture of them corresponding to the conductions in the percolation region, high CB loading region, and limiting high CB loading are proposed by the reasonable configurations of aggregate resistance, contact resistance, gap capacitance, and joining aggregates induction. The characters of the impedance spectra based on the three models are theoretically analyzed. In order to find some link between the electrical conductivity and the CB dispersion manner in the composites, the impedance spectra of three samples, HDPE/15 wt % CB (the center of the percolation region), HDPE/25 wt % CB (a typical point in the high CB loading region), and HDPE/19 wt % CB (the limiting high CB loading region), are measured by plotting the impedance modulus and phase angle against the frequency and by drawing the Cole–Cole circle of the imaginary part and real part of the impedance modulus of each sample. The modeled approached spectra and the spectra measured on the three samples are compared and the following results are found: the measured impedance spectrum of HDPE/15 wt % CB (percolation region) is quite close to the model of conduction via nonohmic contacting chain. The character of the measured spectrum of HDPE/25 wt % CB consists of the form of the model of conduction via ohmic contacting chain. The impedance behavior of HDPE/19 wt % CB exhibits a mixture of the two models. From the comparisons, it is concluded that the electrical conducting network in the percolation region of the CB filled HDPE composite is composed of aggregate resistance, nonohmic contact resistance, and gap capacitance, and that of the high CB loading region consists of continuously joined CB aggregate chains, which are possibly wound and assume helix‐like (not straight lines) conductive chains, acting as electrical inductions as the current passes through. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1344–1350, 2005  相似文献   

12.
The electrical and mechanical properties of new conductive rubber composites based on ethylene–propylene–diene rubber, acrylonitrile butadiene rubber (NBR), and their 50/50 (weight ratio) blend filled with conductive black were investigated. The threshold concentrations for achieving high conductivity are explained on the basis of the viscosity of the rubber. The electrical conductivity increases with the increase in temperature whereas the activation energy of conduction decreases with an increase in filler loading and NBR concentration in the composites. The electrical hysteresis and electrical set are observed during the heating–cooling cycle, which is mainly due to some kind of irreversible change occurring in the conductive networks during heating. The mechanisms of conduction in these systems are discussed in the light of different theories. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 887–895, 1999  相似文献   

13.
The volume resistivity and percolation thresholds of carbon black (CB) filled polypropylene (PP), PP/epoxy, and PP/epoxy/glass fiber (GF) composites were measured. The morphology of these conductive polymer composites was studied with scanning electron microscopy (SEM). The effects of the GF and epoxy contents on the volume resistivity were also investigated. The PP/epoxy/GF/CB composite exhibited a reduced percolation threshold, in comparison with that of the PP/CB and PP/epoxy/CB composites. At a given CB content, the PP/epoxy/GF/CB composite had a lower volume resistivity than the PP/CB and PP/epoxy/CB composites. SEM micrographs showed that CB aggregates formed chainlike structures and dispersed homogeneously within the PP matrix. The addition of the epoxy resin to PP resulted in the preferential location of CB in epoxy, whereas in the PP/epoxy/GF multiphase blends, because of the good affinity of CB to epoxy and of epoxy to GF, CB particles were located in the epoxy phase coated on GF. The decreased percolation threshold and volume resistivity indicated that conductive paths existed in the PP/epoxy/GF/CB composite. The conductive paths were probably formed through the interconnection of GF. Appropriate amounts of GF and epoxy should be used to decrease the volume resistivity and provide sufficient epoxy coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1142–1149, 2005  相似文献   

14.
The mechanical properties of crosslinked polyethylene were studied in an extended range of test conditions in order to determine the recommended service conditions for articles made of crosslinked polyethylene. On the other hand, this study can clarify the advantages of crosslinked polyethylene against the unmodified polymer. In fact, the results referred in the literature concerning the changes of mechanical properties of polyethylene introduced by crosslinking are contradictory and cannot clearly distinguish the two types of polymer. The above study concluded that tensile tests at elevated temperatures (above 70°C) with low stresses (about 0.5 MPa) can clearly describe the effect of crosslinking on the mechanical properties of LDPE, i.e., an improvement at least for deformation and service life.  相似文献   

15.
Y BinC Xu  D ZhuM Matsuo 《Carbon》2002,40(2):195-199
Composite materials based on low molecular weight polyethylene (LMWPE), ultra-high molecular weight polyethylene (UHMWPE) and carbon black (CB) particles were prepared by gelation/crystallization from solution. The positive temperature coefficient (PTC) intensity for the 90/10 (LMWPE/UHMWPE) composition exceeded five orders of magnitude for the specimens heat-treated at a suitable temperature, which was almost equal to that observed with LMWPE-CB blends prepared by a kneading method. In comparison with LMWPE-CB blends, much promoted reproducibility of PTC effect and inhibition of the negative temperature coefficient (NTC) effect were achieved.  相似文献   

16.
The dynamic rheological behavior of high‐density polyethylene (HDPE) composites filled with carbon black (CB) was studied by controlling periodic small shear strains at constant temperatures. The results shed light on the relationship between the behavior of dispersed fillers and polymeric matrix systems. At sufficiently high filler concentration a structural skeleton seems to appear, which significantly raises the modulus at the low frequency region. High structure, finer size acetylene black raises the modulus significantly more than does the low structure and larger size one (e.g., N550). Oxidized CB increases the modulus in the whole frequency region for the enhanced interaction between polymer matrix and CBs. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3527–3531, 2002  相似文献   

17.
The electrical properties of sisal fiber-low density polyethylene (LDPE) and coir fiber-LDPE composites have been studied. The dielectric constant progressively increases with increase of fiber loading and decreases with increase of frequency in the case of all composites. The dielectric constant of sisal-LDPE composites has been studied as a function of fiber length. Volume resistivity values decrease with fiber content. The increase of dielectric constant with fiber loading is more predominant at low frequencies in both the sisal fiber-LDPE and coir fiber-LDPE composites. The results of the natural-fiber-filled composites were compared to those of the carbon and glass-fiber-filled LDPE composites. The dielectric constant of carbon-black-loaded LDPE composites increases with carbon content, and the increase is sharper at high carbon content. This is associated with the network formation of carbon black in LDPE matrix. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
采用纳米炭黑填充Lyocell纤维制备碳纤维,并对纤维的结构与性能进行了分析。结果表明:经过不同温度预氧化处理后和最终得到的碳纤维的X射线衍射图谱中都保留着纳米炭黑的特征衍射峰;填充纳米炭黑的Lyocell基碳纤维的力学性能显著提高,填充质量分数10%纳米炭黑的Lyocell基碳纤维强度和模量分别比未填充的提高45%和56%;纳米炭黑填充的Lyocell基碳纤维结构致密、表面光洁,没有明显的裂纹和缺陷。  相似文献   

19.
The variation of resistivity for high‐density polyethylene (HDPE) conductive composites filled with carbon black (CB) with time was investigated under the excitation of different temperature field. The movement of CB particles in the HDPE matrix was not a momentary equilibrium process, but a relaxation process. The relaxation of resistivity of the composites was monotonic, and it could be described by an exponential form above melting temperature. However, the relaxation of resistivity was nonmonotonic below melting temperature, herein a parameter t0 which was the beginning time of the resistivity attenuation could be introduced into the exponential equation. The attenuation of resistivity at constant temperature was limited for the composites with certain content of CB. The resistivity of the composites would incline to a constant value with the prolongation of time no matter what the heat treatment temperature was. Heating rate had influence on the relaxation of resistivity of the composites, and the lower heating velocity resulted in less time to approach to the equilibrium resistivity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The electrical conduction was investigated in different rubber composites, subjected to various values of longitudinal extension. The study involves styrene-butadiene-rubber (SBR), butadiene-rubber (BR), acrylonitrile-butadiene-rubber (NBR), butyl-rubber (IIR), and natural rubber (NR). Each type was separately blended with 100 phr of fast extruding furnace black. The parameters of the model of Polley and Boonstra are recalculated for a specific example and good fitting is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号