首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
trans-Polyoctenylene rubber, TOR, has been melt blended with PVC and with polystyrene, PS, in various proportions. PVC/TOR and PS/TOR blends were rigid, lending support to the claim that TOR improves dimensional stability of polymer and rubber blends. A processability study of PVC/TOR blends using a Brabender Plasti-corder showed that TOR is a suitable processing aid for PVC.  相似文献   

2.
In this article, we have examined the physical and mechanical properties of poly(vinyl chloride) (PVC)/α‐methyl‐styrene‐acrylonitrile (αMSAN; 31 wt % AN concentrations) blends with different blend ratios. And, we also examined the effect of the molecular weights of PVC on the miscibility and material properties of the blends prepared by melt extrusion blending. Our results showed that the PVC/αMSAN blends have good processing properties and good miscibility over all blend ratios because of the strong interaction between PVC and αMSAN. And, the blends showed enhanced mechanical and thermal properties. In addition, high molecular weight PVC showed reasonable processability when melt blended with αMSAN, which resulted in enhanced mechanical and physical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Electron beam (EB) irradiation of polyvinyl chloride (PVC) was carried out in the presence of three different ethylene–vinyl acetate copolymers (EVA). The mechanical properties of the original and irradiated blends were tested. The gel content measurement, chlorine loss upon electron irradiation, and gel permeation chromatograph (GPC) were used to characterize the effect of EVA on the irradiation behavior of PVC/EVA blends. The content and the chemical structure of EVA in the blends had considerable effects on the mechanical properties and gel content of the blends. The incorporation of EVA into PVC blend can increase the gel content and reduce chlorine loss of the blends. The GPC analysis of the soluble part in the irradiated PVC samples showed that the addition of EVA into the PVC blend lowered the polydispersity of molecular weight of PVC. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1571–1575, 2004  相似文献   

4.
TPU与CPE、HPVC共混物的研究   总被引:2,自引:1,他引:1  
邬素华 《中国塑料》2001,15(5):36-38
以CPE和CPE/HPVC为改性剂,用熔融共混的方式对TPU的共混体系进行了系统的研究。对TPU/CPE和TPU/CPE/HPVC共混体系的力学、耐寒及流变性能进行了测试及分析。实验结果表明:CPE及CPE/HPVC的加入,虽使体系的力学性能有所降低,但能明显改善TPU的加工性能,并且基本保持了TPU优异的耐寒性。  相似文献   

5.
Styrene–acrylonitrile (SAN) with acrylonitrile (AN) concentrations of 11.6–26 wt % and α‐methylstyrene acrylonitrile (αMSAN) with a wide range of AN concentrations are miscible with poly(vinyl chloride) (PVC) through solution blending. Here we examine the rheological properties and miscibility of PVC/SAN and PVC/αMSAN blends prepared by melt extrusion for commercial applications. We have investigated the rheological properties of the blends with a rheometer and a melt indexer. The PVC/SAN and PVC/αMSAN blends have a low melting torque, a long degradation time, and a high melt index, and this means that they have better processability than pure PVC. The miscibility of the blends has been characterized with differential scanning calorimetry, dynamic mechanical thermal analysis, and advanced rheometrics expansion system analysis. The miscibility of the blends has also been characterized with scanning electron microscopy. The SAN series with AN concentrations of 24–31 wt % is immiscible with PVC by melt extrusion, whereas αMSAN with 31 wt % AN is miscible with PVC, even when they are blended by melt extrusion, because of the strong interaction between PVC and αMSAN. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
The transport behavior of O2 and N2 were studied for series of physical blends of PVC with EVA having different vinyl acetate (VAc) contents in the EVA (45 and 65 wt-%) and using different milling temperatures (160° and 185°C). The polymer blends were further characterized by dynamic mechanical measurements, density measurements, and x-ray diffraction. At higher VAc content in EVA and with higher milling temperature, the rate of permeation (P) and the rate of diffusion (D) decrease, and the activation energy of D (from Arrhenius plots) increases. Furthermore, the experimental density values of PVC/EVA-45 blends agree well with calculated values, assuming volume additivity of the two components, while those of PVC/EVA-65 blends are higher than the calculated densities. These results are interpreted as due to denser packing of polymer molecules and increased PVC-EVA interaction at higher VAc content and with higher milling temperature, indicating better compatibility between the blend components. The x-ray diffraction data give no evidence of crystallinity. Sharp increases in P and D values at about 7.5% EVA (by weight) are found for PVC/EVA-45 blends (in agreement with our previous work) but not for PVC/EVA-65 blends. This is interpreted as due to a phase inversion at increasing EVA content in the former blends but not in the latter blends. The dynamic mechanical measurements show that the PVC/EVA-65 blends milled at 160°C behave largely as semicompatible systems with maximum interaction between the two polymers at compositions of about 50/50 by weight.  相似文献   

7.
Summary: Binary and ternary blends of PVC mixed with α‐methylstyrene/acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) and ethylene/vinyl acetate/carbon monoxide terpolymer (EVA‐CO) are investigated, with the aim to obtain a new PVC based material with an improved heat distortion temperature and good processability. Dynamic Mechanical Thermal Analysis (DMTA) reveals that ternary PVC/AMS‐ABS/EVA‐CO blends exhibit two glass transition temperatures: the lower Tg corresponds to a PVC/EVA‐CO phase and the higher one to a PVC/AMS‐ABS phase. An analysis of PVC respective interactions with AMS‐ABS and EVA‐CO leads to assert that the distribution of PVC in the ternary PVC/AMS‐ABS/EVA‐CO system is basically controlled by the binary immiscible blend composition, taken as Φ AMS‐ABS/Φ EVA‐CO ratio. The inclusion of AMS‐ABS and EVA‐CO to form ternary blends based on PVC, allows to improve heat distortion temperature (owed to the presence of AMS‐ABS), maintaining a low viscosity in the molten state, due to the plasticizing effect of EVA‐CO.

Viscosity function obtained at T = 170 °C from extrusion capillary measurements.  相似文献   


8.
Viscometric data were applied to characterize the miscibility of poly(vinyl chloride) (PVC)/poly(ethylene-co-vinyl acetate) (EVA) mixtures using six samples of EVAs with different vinyl acetate content in the copolymer. Relative viscosity vs composition plots showed the imiscibility of PVC/EVA 31 and PVC/EVA 41 blends. The variation of the reduced viscosity, sp/C with the concentration, C, has been studied for 50:50 by weight blends of PVC/EVA 45, PVC/EVA 45A, PVC/EVA 50 and PVC/EVA 70 in tetrahydrofuran at 25°C. The presence of a sharp crossover and a consequent reduction of slope in sp/C vs C plots showed that these systems are miscible for a concentration range which corresponds to the regime of dilute solution.  相似文献   

9.
Blends of poly(vinyl chloride) (PVC) with different copolymers have been studied to obtain a plasticized PVC with improved properties and the absence of plasticizer migration. The copolymers used as plasticizers in the blends were acrylonitrile butadiene rubber, ethylene vinyl acetate (EVA), and ethylene-acrylic copolymer (E-Acry). Blends were studied with regard to their processing, miscibility, and mechanical properties, as a function of blend and copolymer composition. The results obtained were compared with those of equivalent compositions in the PVC/dioctyl phthalate (DOP) system. Better results than PVC/DOP were obtained for PVC/acrylonitrile butadiene rubber blends. The plasticizing effect on PVC of EVA and E-Acry copolymers was similar to that of DOP. It is shown that crosslinking PVC/E-Acry blends or increasing the vinyl acetate content in PVC/EVA blends, are alternatives that can increase the compatibility and mechanical properties of these blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1303–1312, 2000  相似文献   

10.
ACR对PVC加工性能的影响   总被引:1,自引:0,他引:1  
详细研究了丙烯酸酯类PVC加工助剂———ACR的特性黏度、组成对PVC共混物加工性能的影响。结果表明,随着甲基丙烯酸甲酯用量的下降和丙烯酸丁酯用量的提高,其塑化速度增大,但熔体强度降低,在组成相同的情况下,特性黏度越大,塑化越慢,熔体强度越大;丙烯酸酯类加工助剂对PVC制品的拉伸强度和维卡软化点无明显影响,高黏度的加工助剂有提高PVC制品拉伸强度和维卡软化点的趋势。  相似文献   

11.
Two commercial polymer materials, metallocene linear low density polyethylene (m‐LLDPE) and ethylene/vinyl acetate copolymer (EVA) have been used to form binary blends of various compositions. The mechanical properties, morphology, rheological behavior, dynamic mechanical properties, and crystallization of m‐LLDPE/EVA blends were investigated. It was found that with the addition of EVA, the fluidity and processability of m‐LLDPE were significantly improved, and the introduction of polar groups in this system showed no significant changes in mechanical properties at lower EVA content. As verified by morphology observation and differential scanning calorimetry analysis, miscible blends were formed within certain weight ratios. Dynamic mechanical property studies showed that flexibility of the blends was enhanced in comparion with pure m‐LLDPE, where the peak value of loss modulus shifted to lower temperature and its intensity was enhanced as EVA content increased, indicating the existence of more amorphous regions in the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 905–910, 2004  相似文献   

12.
Blends with different ratios of thermoplastic polyurethane/polypropylene (TPU/PP) were prepared by melt mixing using an internal Haake mixer. Properties of the blends were investigated using SEM micrographs of cryofractures and measurement of the mechanical strength, water absorption, cell culture, and platelet adhesion in vitro tests, which were compared with those of PVC blood bags. The effect of the addition of the ethylene–vinyl acetate (EVA) copolymer on the TPU/PP blend properties was investigated. The results indicated that a TPU/PP/EVA = 80/20/5 blend can be used as a new blood bag material. It was observed that the blend is homogeneous with higher mechanical strength than that of the commercial PVC blood bag. This blend also showed a compatible cell response in contact with L929 fibroblast cells and fewer tendencies to interaction with platelets compared to the PVC blood bag. Although the blends were immissible and no chemical reaction at the interface could be found, the blood compatibility of the blends were improved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2496–2501, 2003  相似文献   

13.
PMI—St—AN三元共聚物耐热改性剂/PVC共混改性研究   总被引:5,自引:0,他引:5  
冯杰  黄志明 《中国塑料》1999,13(8):51-54
以PMI-St-AN三元共聚物作为耐热改性剂,考察其用量对PVC耐热、力学及加工性能的影响。结果表明:该改性剂能明显提高PVC的耐热性能和拉强度,冲击性能略有下降,加工性能则随改性剂分子质量的降低而提高。  相似文献   

14.
葛丽丽  吴集钱  李锦春 《化工进展》2014,33(7):1822-1825
通过熔融共混法制备了聚乳酸(PLA)/乙烯-乙酸乙烯酯共聚物(EVA)共混物,采用SEM、DSC、旋转流变仪等研究了VA质量分数为28%,熔体流动速率(MFR)不同的EVA对PLA/EVA共混物性能的影响。结果表明,EVA熔体流动速率越小,其在PLA基体中分散越均匀,EVA颗粒粒径也越小。共混物的结晶度随EVA熔体流动速率的增大而增大,但PLA的玻璃化转变温度(Tg)基本不受EVA的影响。PLA/EVA共混物的复数黏度和储能模量均随EVA的熔体流动速率的增高而减小。力学性能测试结果表明,当EVA的质量分数为15%时,PLA的断裂伸长率明显升高,冲击强度约是纯PLA的2倍。  相似文献   

15.
Although polymer/polymer miscibility is considered the exception to the general rule, in polymer thermodynamics specific interactions between active sites on two polymers can be a driving force for polymer/polymer miscibility. Both the intermolecular interactions of the alpha hydrogen of PVC with carbonyl groups in various polyesters and the polarity of the chlorine bond have been claimed to promote miscibility. Both of these interactions are potential in PVC/styrene maleic anhydride (SMAnh) polymer blends. These specific interactions promoting miscibility and the resulting mechanical properties of these systems is the subject of this report. SMAnh (12.5% MA) copolymer was melt compounded with a stabilized PVC compound using a Haake Rheocord twin screw extruder. Test data generated for these blends were analyzed for miscibility and effects of SMAnh copolymers on heat resistance, fire retardance, impact strength, and processability of PVC.  相似文献   

16.
改性石油树脂的合成及其增容PVC/PE共混物的研究   总被引:5,自引:0,他引:5  
通过对石油树脂与顺丁烯二酸酐反应条件的考察,确定了其最佳反应条件。运用顺酐化石油树脂与异辛醇酯化反应制备了改性石油树脂(MPR),并将其作为聚氯乙烯/聚乙烯(PVC/PE)的增容剂,研究了PVC/MPR/PE共混体系的相容性、加工性及其材料的力学性能。结果表明,MPR是PVC/PE共混物的一种良好增容剂,PVC/MPR/PE质量比为100/8/6时,共混物具有良好的塑化效果和流动性能,优良的综合性能。  相似文献   

17.
相容剂对PVC/PA6体系形态结构的影响   总被引:3,自引:2,他引:1  
研究了SMA—g—MAH、SEBS—g—MAH和EVA—g—MAH3种相容剂对PVC/PA6共混物的增容效果。结果表明,未添加相容剂的PVC/PA6(100/20)共混物的相容性不好;添加SEBS—g—MAH和EVA—g—MAH两种相容剂后,PVC/PA6共混物的相容性得到一定程度的改善;添加SMA—g—MAH相容剂后,PA6很均匀地分散在PVC基体中。  相似文献   

18.
李惠林  王琪 《化工学报》1990,41(6):732-739
本文研究了混炼温度和时间对PVC/EVA共混物抗冲性能的影响,发现加入聚乙烯,共混体系的抗冲击强度能进一步提高.用TEM观察了PVC/EVA的形态结构,采用Brabender塑化仪和毛细管流变仪研究了共混物的塑化和熔体流变行为.通过计算机对实验结果进行二元线性回归,建立了共混物的熔体粘度与剪切应力和温度相关联的数学模型.  相似文献   

19.
以氯乙烯-丙烯酸丁酯共聚物[P(V-B)]作为PVC和高密度聚乙烯(HDPE)的增容剂,研究讨论了共混物的相容性及其加工性能,并在此基础上研制了以P(V-B)为增容剂的PVC/HDPE共混材料,进而研究了共混材料的力学性能。结果表明:合适配比的共混体系具有良好的相容性、塑化效果和流动性能,明显改善了PVC的加工性能,并在拉伸强度、弯曲强度等具有较高保持率的前提下,显著地提高了材料的冲击性能。  相似文献   

20.
Blends of polyvinyl chloride/epoxidized natural rubber (PVC/ENR) blends were studied. Their rheological properties were studied with a Brabrender Plasticorder. It was found that the rheological properties of any PVC/ENR blends are governed by their blending conditions. To ensure homogenous PVC/ENR blends, adequate and suitable blending conditions must be utilized. PVC thermoplastics phases enhances rigidity while ENR rubbery phases imparts flexibility and processability to the blends. With premixing, Ba/Cd/Zn-based PVC stabilizer is effective in stabilizing the PVC/ENR blends. Their properties are further enhanced by the addition of curatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号