首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

2.
M.A. Barbosa 《Corrosion Science》1983,23(12):1293-1305
The pitting resistance of AISI 316 stainless steel after passivation in diluted nitric acid was studied in comparison with that of non-passivated specimens. The passivation treatment increased the pitting potential but decreased the resistance to crevice corrosion under open circuit conditions in aerated sea water. Immersion in the nitric acid solution was found to remove the sulphide inclusions from the metal surface, thus eliminating the most susceptible sites for attack. In the absence of sulphide particles pitting nucleated at aluminium-rich oxides.  相似文献   

3.
《Corrosion Science》1999,41(2):275-289
The effects of surface finish, nitric acid passivation and ageing in air on corrosion resistance of 316LVM stainless steel in 0.5% H2SO4 have been investigated by EIS, potentiodynamic polarization measurements and XPS. The results indicate that a smoother surface exhibits to a higher corrosion resistance. The effectiveness of the passivation treatment strongly depends on nitric acid concentration, passivation time and temperature. The passivation treatment significantly increases the corrosion resistance due to a high Cr content in the passive film and increased film thickness. Ageing after passivation increases the corrosion resistance whereas ageing before passivation has little effect.  相似文献   

4.
A remarkable improvement in the pitting corrosion resistance of 304 stainless steel was attempted using a novel duplex passivation treatment method. First, chemical passivation in nitric acid followed electrochemical passivation via potential polarization of step cycling in sodium nitrate electrolyte. Compared with traditional chemical passivation, breakdown potential was increased from 0.31 VSCE to positive than 0.9 VSCE at 70°C in a solution bearing 0.6 M [Cl?] concentration. The critical pitting temperature was enhanced from 21.5°C to above 70°C in a solution with 6 M [Cl?] concentration. Impedance analysis and X‐ray photoelectron spectroscopy results show that a more compact passive film with a higher ratio of chromium oxide on iron oxide was achieved by electrochemical passivation compared with chemical passivation. Morphology observation suggested that the potential polarization of step cycling slightly increased the dissolution of inclusions after being subjected to chemical passivation. The probable reason for the improvement on pitting resistance is discussed in detail based on inclusion dissolution and the protectiveness in passive film.  相似文献   

5.
During localized (crevice and pitting) corrosion, a local cell is established between an anode within a crevice or pit and a cathode on the surrounding passive surface. Data are presented to show that concentrated acidic chloride solutions, simulating corrosion product hydrolysis within a crevice or pit, produce potentials which are active (negative) to the normal surface passive potential. This behaviour explains the previously observed active drift of corrosion potential after initiation of crevice or pitting attack in dilute chloride solutions. The active state in concentrated chloride solutions was quite noble (positive) compared to the active state in more dilute solutions. Thus, there is no need to invoke ohmic resistance effects to account for the active state within a crevice or pit.Experiments were devised in which the local anode within a crevice was physically separated from the nearby passive-surface cathode. When the two were coupled together electrically, the cathode surfaces were polarized nearly to the unpolarized local anode potential, with only a few millivolts anodic polarization at the anode within the crevice. The rate of localized corrosion appears from the data to be limited by the rate of dissolved-oxygen reduction on the cathode surfaces. Thus, localized corrosion in dilute chloride solutions will be increased by (a) raising the temperature, (b) adding an oxidizer such as Fe3+ ions, or (c) substituting external anodic polarization for dissolved oxidizers.The overall potential, Ecorr acquired by a specimen undergoing pitting or crevice corrosion is demonstrated to be near the protection potential, Ep below which pitting corrosion cannot propagate. Any potential active to Ecorr and Ep results in cathodic polarization and suppression of the anode reaction in a crevice or pit. Since both Ecorr and Ep vary with the extent of previous localized attack, Ep is not a unique property of the alloy as has been sometimes suggested and is of limited value in classifying alloy resistance to localized corrosion.  相似文献   

6.
In an effort to examine the combined effect of HNO3, NaCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were performed. The corrosion response of 304 SS was bifurcated: materials were either continuously passive following immersion or spontaneously passivated following a period of active dissolution. Active dissolution was autocatalytic, with the corrosion rate increasing exponentially with time and potential. The period of active corrosion terminated following spontaneous passivation, resulting in a corrosion rate decrease of up to five orders of magnitude. The length of the active corrosion period was strongly dependent on the solution volume-to-surface area ratio. This finding, coupled with other results, suggested that spontaneous passivation arises solely from solution chemistry as opposed to changes in surface oxide composition. Increasing NaCl concentrations promoted pitting, active dissolution upon initial immersion, a smaller potential range for passivity, longer active corrosion periods, larger active anodic charge densities preceding spontaneous passivation, and larger corrosion current and peak current densities. In contrast, intermediate HNO3 concentrations promoted active dissolution, with continuous passivity noted at HNO3 concentration extremes. During active corrosion, increased HNO3 concentrations increased the anodic charge density, corrosion current density, and peak current density. The time required for spontaneous passivation was greatest at intermediate HNO3 concentrations. Susceptibility to pitting was also greatest at intermediate HNO3 concentrations: the pit initiation and repassivation potentials decreased with increasing HNO3 concentration until the HNO3 concentration exceeded a critical concentration beyond which susceptibility to pitting was entirely eliminated. Increasing solution temperature increased the susceptibility to both pitting and active dissolution.  相似文献   

7.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

8.
ZG06Cr13Ni4Mo martensitic stainless steel was nitric acid-passivated to improve its corrosion performance. The effects of nitric acid passivation on the surface morphology, chemical composition, electrochemical properties, semiconductor behavior, and long-term corrosion performance of the stainless steel were investigated using various analytical techniques. An in-depth analysis of X-ray photoelectron spectroscopy (XPS) showed that the passive film formed after the acid passivation process showed high thickness and a duplex character as it consisted of a hydroxide layer and an oxide layer. The oxide layer affected the corrosion resistance and thickness of the passive film. The thickness of the passive film was calculated theoretically as well as experimentally by fitting the electrochemical impedance spectroscopy and XPS results. The electrochemical tests revealed that the dramatic increase in the corrosion resistance of the stainless steel after the passivation was due to the formation of a thick, low-disorder passive film rather than Cr enrichment. The removal of inclusions resulted in higher pitting resistance, whereas the increased roughness showed a negative effect on the corrosion behavior of the stainless steel. During the wet–dry cyclic tests, the modification of the passive film was examined. The passivated stainless steel exhibited good corrosion resistance for up to 50 days of exposure in the simulated environment.  相似文献   

9.
Cooling water side corrosion resistance of high alloyed materials for handling of process side sulfuric acid The approved materials for use in sulfuric acid alloy 825 (German material No. 2.4858) and alloy 20 (German mater. No. 2.4660) have only a low resistance against localized corrosion in chloride containing water and are unsuitable for handling of sulfuric acid. The newly developed austenitic Cr-base alloy, alloy 33, (X1CrNiMoCuN 33-32-1, German mater. No. 1.4591) with 33 % Cr, 31 % Ni, 0,6 % Mo and 0.4 % N should have an excellent resistance against pitting and crevice corrosion additional to its high sulfuric acid resistance, too, because its Pitting Resistance Equivalent No. calculated according to PREN = %Cr + 3,3 · %Mo + 30%N runs to 50. Pitting and crevice corrosion properties of the alloy 33 are tested in comparison to those of reference materials in high chloride containing solutions (1M NaCl, artificial and modified sea water, 10% FeCl3 · 6H2O; 500 g/l CaCl2 ). Pitting potentials and potentials of repassivation of pitting, critical temperatures of localized corrosion (FeCl3-test, CaCl2-test, artificial sea water), potentials of repassivation of crevice corrosion as well as depassivation pH values of crevice corrosion following Crolet have been determined. The results confirm that the localized corrosion behaviour of the alloy 33 corresponds to its PREN. With regard to pitting corrosion alloy 33 is comparable with the special stainless steel alloy 31 (mater. No. 1.4562), with regard to crevice corrosion it is comparable with alloy 926 (German mater. No. 1.4529).  相似文献   

10.
Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linear and potentiodynamic polarization. The results indicate that the laser-welded NiTi alloy is less susceptible to pitting and crevice corrosion than the base metal, which is demonstrated by the increase in polarization resistance(Rp) and pitting potential(φpit) and decrease in corrosion current density(Jcorr) and mean difference between φpit and φprot values. It is confirmed by scanning electron microscope micrographs that pits could be observed on the surface of base metal but not on the surface of laser-welded alloy after potentiodynamic tests. An improvement of corrosion resistance of laser-welded NiTi alloy could be attributed to almost complete dissolution of inclusions upon laser welding.  相似文献   

11.
Abstract

Novel test rigs are described for the study of the corrosion of metal specimens under controlled heat fluxes. In the corrosion of stainless steels in nitric acid, tests at various heat fluxes with steel surface temperature kept constant have shown that the cooler acid present at the surface under higher heat fluxes leads to slightly smaller corrosion rates than under isothermal conditions. Crevice corrosion can develop under the gasket sealing the stainless steel specimen to the test cell. This crevice corrosion can produce enhanced corrosion rates (by factors up to 100), not only on surfaces within the crevice, but also on those external to the crevice. The factors influencing the development of crevice corrosion are discussed.  相似文献   

12.
The corrosion of X70 pipeline steel under a model disbonded coating was studied in a simulated solution of Korla soil by combining in situ electrochemical measurements at different locations in the crevice and stress corrosion cracking (SCC) sensitivity analyses in the corresponding simulated environments. The results from electrochemical impedance spectroscopy showed that the corrosion product resistance R t and charge transfer resistance R ct of X70 steel first increased and then decreased with increasing distance from the opening of the crevice in the disbonded coating. Scanning electron micrographs showed that pitting in the crevice became more severe at deeper locations in the crevice. Slow strain rate tests showed that the lowest SCC sensitivity of X70 steel was found at 15 cm away from the opening, and the highest SCC sensitivity was at the end of the crevice.  相似文献   

13.
Electrochemical noise measurements on anodically polarised type 304 stainless steel surfaces in contact with buffer solutions of neutral pH were performed to study the effect of chloride ions in the nucleation of pitting corrosion. Passive layer stability and susceptibility to pitting corrosion after pickling and passivation at different environmental conditions were also investigated by means of electrochemical current noise measurements under cathodic and anodic polarisation. According to the obtained experimental results pits nucleate independently on the presence of chloride ions. It has been also shown that protectiveness of stainless steel surfaces after pickling strongly depends on the relative humidity of the environment in which the surface is subsequently passivated.  相似文献   

14.
To study crevice corrosion of pure aluminum, polished specimens partly covered with a glass foil were polarized potentiostatically in 1 N NaCl-solution at potentials negative to the critical potential for stable pitting (pitting potential). For comparison, non-crevice experiments were performed on polycrystalline and singlecrystalline material in neutral as well as acidified 1 N NaCl-solution and in AlCl3-solutions. Corrosion morphology was examined by scanning electron microscopy. In current-time plots recorded during experiments on crevice corrosion, both an incubation and a propagation stage are discernible. If experiments were interrupted during the induction period, micropits were found inside the crevice. This unstable micropitting is detectable down to 0.30 V below the pitting potential. In contrast, during crevice corrosion propagation, the aluminum surface undergoes general attack. In a range of 0.2 V below the pitting potential, dimpled surfaces are produced. At more negative potentials, metal dissolution occurs crystallographically oriented. An identical behaviour was detected on unshielded samples polarized in the same potential range in both 1 N AlCl3- and acidified 1 N NaCl-solution. Hence, the build-up of an acidic electrolyte is considered the sufficient requirement for crevice corrosion initiation.  相似文献   

15.
In order to replace the hazardous chromate‐based surface treatment, a new cerium chemical conversion coating was developed on 316L stainless steel through a mixed solution of hydrated cerium nitrate, citric acid, and hydrogen peroxide. The chemical composition was characterized by energy‐dispersive spectroscopy, X‐ray photoelectron spectroscopy and atomic force microscope. The dense conversion coating is composed of CeO2 with a small amount of Ce2O3 and has small grain size lower than 50 nm. Its thickness is about 47.4 nm as determined by spectroscopic ellipsometry analysis. Potentiodynamic polarization was used to study the corrosion behavior of the coatings in the concentrated artificial seawater at 72 °C. In comparison with the conventional nitric acid‐chromate passivated specimens, the cerium conversion coatings show much higher pitting potentials. It is suggested that the cerium conversion treatment is more effective than the nitric acid‐chromate passivation to improve the pitting resistance of 316L stainless steel used in the hot seawater environments.  相似文献   

16.
This study considers the corrosion behavior of the X5CrNi18 10 stainless steel-welded joint in NaCl solution, with and without the presence of several corrosion inhibitors (NaNO3, Ce(NO3)3, and CeCl3). The degree of sensitization of the welded joint to intergranular corrosion is determined using the electrochemical potentiokinetic reactivation method with a double-loop method. Pitting corrosion tests are performed by the potentiodynamic method. Resistance to general corrosion and the stability of the passive film is assessed based on the results of electrochemical impedance spectroscopy measurements, as well as on the values of the corrosion and passivation current. The main goal of this study is to determine the relation of the welded joint microstructure to general and pitting corrosion in the presence of the corrosion inhibitors. The value of pitting potential for the base metal and weld metal in the presence of the NaNO3 or Ce(NO3)3 inhibitor is shifted to potentials in the transpassive area. The pitting potential for the heat-affected zone also possesses a noticeable higher value. However, nitrate ions do not increase the general corrosion resistance of any part of the welded joint. CeCl3 does not increase resistance to general or pitting corrosion.  相似文献   

17.
Hydrofluoric and hydrochloric acid solutions and a mixture of them were tested as pickling solutions for AZ91 D Mg alloy before application of stannate coatings. Optical microscopy and energy dispersive X-ray spectroscopy (EDX) of the alloy surface after the pickling process showed that the Mg-rich α phase dissolved preferentially rather than the Al-rich β phase in hydrochloric acid solution. On the other hand, in hydrofluoric acid solution, Mg dissolved in a form of pitting corrosion. Pickling pretreatment with a mixture of these acids at an optimal concentration and an optimal pickling time resulted in relatively uniform dissolution of the alloy surface. The potentiodynamic polarization technique was used to investigate the anodic behavior of the uncoated and coated magnesium alloy in borate buffer solution. The morphology of the coatings was observed using a scanning electron microscope (SEM) before and after corrosion tests. The experimental results showed that coating film density and corrosion resistance of stannate-coated samples prepared with pickling pretreatment were improved compared with those of the coated sample without pickling pretreatment.  相似文献   

18.
Samples of 316 stainless steel have been subjected to passivation treatments at ambient temperature for 1 h in solutions of up to 50 wt% nitric acid. Pitting potentials of the treated samples were measured in 1 M NaCl at 70°C and were shown to vary with the concentration of the pre-treatment; increasing with concentration up to 25 wt% and then decreasing as the acid concentration was further increased. The corrosion potential reached during the passivation treatment increased with acid concentration, such that the highest measured pitting potential was associated with a final passivation potential of 300–400 mV versus SCE. MnS inclusions were at least partially removed by treatment with any nitric acid concentration, whilst chromium enrichment of the film reached a peak value for an acid concentration of 25 wt%. The rate of metastable pitting was also found to vary with the concentration of the acid used in the passivation treatment, as did the probability of a metastable pit becoming stable. A probabilistic pitting model suggests that acid treatment reduces the number of possible pit initiation sites at low potentials, but the most dangerous sites in corrosion terms are also the most difficult to remove by acid treatment.  相似文献   

19.
The FeCl3 test is applied to an increasing extent for examining the resistance to pitting and crevice corrosion. Two methods having proved their value are described, the chemical properties of the FeCl3 solution with regard to hydrolysis, pH and redox potential behaviour at various test temperatures are set forth and finally numerous results of the application of this test to high-alloy stainless steels and nickel alloys are presented. These results have been used to establish, be means of multiple regression, two empirical equations that allow to estimate rather accurately the critical pitting and crevice corrosion temperatures (CPT, CCT) from the contents of the decisive alloying constituents. These temperatures vary by about 2.5°C in the CPT test and by approx. 10°C in the CCT test, which can be reduced, however, by extending the test period beyond 24 hours. This is due to the fact that corrosion potentials in a 10% FeCl3 · 6H2O solution take a long time to stabilize. The variation of the critical crevice temperature can be further reduced by pressing the crevice blocks at a higher torque to the specimen. Another section particularly deals with the application of the CPT test for determining the influence of the matrix on the resistance to local corrosion. Consequently, the CPT test lends itself excellently to the examination of welds and as a quality control. Finally, CPT test results are compared with pitting data determined electro-chemically in artificial seawater. This shows that the ranking order with regard to corrosion resistance is identical, although media and processes differ considerably from each other.  相似文献   

20.
Pitting and crevice corrosion of Al alloys and Al-based metal matrix composites can be detected by characteristic changes of the impedance spectra in the low frequency region. A pitting model has been developed which is in agreement with the experimental data. A fitting procedure has been used to analyze a large number of data which have been obtained for as-received samples and samples which had been passivated in CeCl3 solutions. This chemical passivation process produces surfaces which are very resistant to localized corrosion. Al 6061, Al/SiC and Al/graphite which had been passivated in CeCl3 for one week did not pit in 0.5 N NaCl for at least one month. Electrochemical impedance spectroscopy (EIS) is a convenient tool for monitoring of the passivation and the corrosion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号