首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the data of the literature for intercrystalline stress corrosion cracking (SCC) and hydrogen embrittlement of the High Strength AISI 4340 steel, determination of the so far unknown effects of tempering treatment around the low temper martensite embrittlement range (between 175 and 285°C) on the crack growth rates in 0.5 N NaCl solution. Effect of variation of stress intensity and applied potentials on crack growth rates. Effect of initial applied stress intensity and crack tip sharpness on crack growth characteristics. Discussion on crack growth rates for a better understanding of the SCC mechanism.  相似文献   

2.
Attempts have been made to elucidate the mechanism of stress-corrosion cracking (SCC) in high-strength Al-Zn-Mg and Al-Li-Zr alloys exposed to aqueous environments by considering the temperature dependence of SCC susceptibility based upon the anodic dissolution and hydrogen embrittlement models. A quantitative correlation which involves the change of threshold stress intensity,K ISCC, with temperature on the basis of anodic dissolution has been developed with the aid of linear elastic fracture mechanics. From the derived correlation, it is concluded that the threshold stress intensity decreases as the test temperature increases. This suggestion is inconsistent with that predicted on the basis of hydrogen embrittlement. It is experimentally observed from the Al-Zn-Mg and Al-Li-Zr alloys that the threshold stress intensity,K,ISCC, decreases and the crack propagation rate,da/dt, over the stress intensity increases with increasing test temperature. From considering the change in SCC susceptibility with temperature, it is suggested that a gradual transition in the mechanism for the stress-corrosion crack propagation occurs from anodic dissolution in stage I, where the crack propagation rate increases sharply with stress intensity, to hydrogen embrittlement in stage II, where the crack propagation rate is independent of stress intensity.  相似文献   

3.
The linearly increasing stress test (LIST) was used to study the stress corrosion cracking (SCC) behavior of a range of pipeline steels in carbonate-bicarbonate solution under stress rate control at different applied potentials. Stress corrosion cracking, at potentials below -800 mV(SCE), was attributed to hydrogen embrittlement. Stress corrosion cracking, in the potential range from about-700 to -500 mV(SCE), was attributed to an anodic dissolution mechanism. In the anodic potential region, the SCC initiation stress was larger than the yield stress and was associated with significant plastic deformation at the cracking site. The relative SCC initiation resistance decreased with in-creasing yield strength. In the cathodic potential region, the SCC initiation stress was smaller than the yield stress of steel; it was approximately equal to the stress at 0.1 pct strain(@#@ Σ0.1pct) for all the steels. The original surface was more susceptible to SCC initiation than the polished surface.  相似文献   

4.
This article investigates the mechanisms governing the process of alloy 600 stress corrosion cracking (SCC). Several critical points have been selected. First, the deleterious influence of cathodic polarization on alloy 600 SCC resistance has been assessed by slow strain rate tests (SSRTs) in primary water at 360 °C. The effects on crack initiation and propagation have been distinguished. Second, a global hydrogen embrittlement of alloy 600 has also been studied at different temperatures from 25 °C to 360 °C. Finally, the use of alloy 600 single crystals allowed clear separation of the crack initiation and crack propagation mechanisms. Transgranular SCC propagation has been precisely observed and described. The possible mechanisms for SCC initiation and propagation on polycrystals are then discussed.  相似文献   

5.
Fracture-mechanics-based test and evaluation techniques provide insight into the phenomenon of stress corrosion cracking (SCC) and help to develop guidance for avoiding or controlling SCC. In addition to constant load and constant deflection tests, techniques that are based on rising load or rising displacement procedures are applied increasingly in fracture mechanics SCC testing. Rising displacement tests on precracked specimens were used for studying hydrogen embrittlement (HE) and to serve as a basis for modeling material degradation caused by the uptake of atomic hydrogen from the environment. The measurements of the crack-tip opening angle and of the crack-tip opening displacement combined with crack growth velocity data served to rationalize the experimental findings by comparison with the results of simulations of HE using various models.  相似文献   

6.
The stress corrosion cracking (SCC) behavior of 4135 steel under different heat treatments is analyzed in an attempt to relate microstructural characteristics with macroscopic measurements of SCC resis-tance, especially the very impressive improvements associated with changes from intergranular (IG) to transgranular (TG) fracture paths. Considering that local hydrogen embrittlement at the crack tip causes SCC processes, a local cracking criterion, based on a critical strain depending on hydrogen concentration, is assumed to control the process. Stress corrosion cracking is viewed as a discontin-uous series of unstable crack extensions through the locally embrittled regions. The model developed on this basis explains the macroscopic behavior observed at the threshold situation and partially at stage II propagation and clarifies the role of the metallurgical variables in each of the types of fracture detected.  相似文献   

7.
Atmospheric stress corrosion cracking of a superplastic 7475 aluminum alloy   总被引:1,自引:0,他引:1  
The influence of different heat treatments upon the atmospheric stress corrosion cracking (SCC) of fine-grained 7475 Al-alloy plates has been investigated. The small size of the matrix precipitates and grain-boundary precipitates (GBPs) was found to be the main cause of atmospheric SCC suscepti-bility. Increasing the size of the matrix precipitates and GBPs by increasing the degree of aging could improve the atmospheric SCC resistance. The size of the matrix precipitates was the major factor affecting the atmospheric SCC resistance when GBPs were larger than a critical size that could nucleate hydrogen bubbles. However, if the size of the GBPs was smaller than this critical size, the improvement of atmospheric SCC resistance due to grain refinement, resulting from a more homo-geneous slip mode, could not be obtained because hydrogen embrittlement became serious. By meas-uring the electrical conductivity, the influence of matrix precipitates, but not that of GBPs, on SCC susceptibility could be obtained. Retrogression and reaging (RRA) treatment could effectively im-prove the atmospheric SCC resistance of T6 temper because RRA temper could produce larger sizes of both the matrix precipitates and GBPs than could T6 tempered condition.  相似文献   

8.
The susceptibility to stress-corrosion cracking (SCC) of rapidly solidified (RS) aluminum powder metallurgy (P/M) alloys 7090 and 7091, mechanically alloyed aluminum P/M alloy IN* 9052, and ingot metallurgy (I/M) alloys of similar compositions was compared using bolt-loaded double cantilever beam specimens. In addition, the effects of aging, grain size, grain boundary segregation, pre-exposure embrittlement, and loading mode on the SCC of 7091 were independently assessed. Finally, the data generated were used to elucidate the mechanisms of SCC in the three P/M alloys. The IN 9052 had the lowest SCC susceptibility of all alloys tested in the peak-strength condition, although no SCC was observed in the two RS alloys in the overaged condition. The susceptibility of the RS alloys was greater in the underaged than the peak-aged temper. We detected no significant differences in susceptibility of 7091 with grain sizes varying from 2 to 300 μm. Most of the crack advance during SCC of 7091 was by hydrogen embrittlement (HE). Furthermore, both RS alloys were found to be susceptible to preexposure embrittlement—also indicative of HE. The P/M alloys were less susceptible to SCC than the I/M alloys in all but one test.  相似文献   

9.
The purpose of this work was to investigate the role of chromium on hydrogen embrittlement of Ni-Cr-Fe alloys and thus to develop a better understanding of the low-temperature stress corrosion cracking (SCC) phenomenon. The effect of chromium on hydrogen embrittlement was examined using tensile tests followed by material evaluation via scanning electron microscopy (SEM) and light optical microscopy. Four alloys were prepared with chromium contents ranging from 6 to 35 wt pct. In the uncharged condition, ductility, as measured by the percent elongation or reduction in area, increased as the alloy chromium content increased. Hydrogen appeared to have only minor effects on the mechanical properties of the low-chromium alloys. The addition of hydrogen had a marked effect on the ductility of the higher-chromium alloys. In the 26 pct chromium alloy, the elongation to failure was reduced from 53 to 14 pct, with a change in fracture mode from mixed ductile dimple and ductile intergranular failure to a brittle appearing intergranular failure. A maximum in embrittlement was observed in the 26 pct Cr alloy. The maximum in embrittlement coincided with the minimum in stacking-fault energy. It is proposed that the increased hydrogen embrittlement in the high-chromium alloys is due to increased slip planarity caused by the lower stacking-fault energy. Slip planarity did not appear to affect the fracture of the uncharged specimens.  相似文献   

10.
The environmental response of commercially produced high-strength Al alloys, such as 7075, depends strongly on the anisotropy of the grain structure. Minimum resistance to both stresscorrosion cracking (SCC) and hydrogen embrittlement is observed in the short transverse direction of the “pancake” grain structure in commercially produced alloys. It has not been established, however, exactly how the morphology of the grain structure mediates the SCC response or the SCC mechanism. Therefore, stress-corrosion testing of a high-purity 7075 Al alloy (low in Fe, Si, and Cr), having equiaxed grains, under tension (mode I) and torsion (mode III) loading in a solution of IN A1C13 has been performed. The SCC results in the two loading modes, including fractography, appeared to suggest that the predominant processes of SCC were hydrogen embrittlement in mode I and anodic dissolution in mode III, in agreement with prior work on a commercially produced 7075 alloy, but that severe corrosion during longer tests renders those results unsuitable for threshold determination in this very aggressive testing environment. Formerly with Carnegie Mellon University Formerly with Carnegie Mellon University  相似文献   

11.
An investigation of the stress-corrosion cracking (SCC) behavior of three aluminum powder alloys, containing 0.0, 0.4, and 0.8 wt pct Co, using double cantilever beam specimens has shown a significant increase in SCC resistance with increasing Co content. This resistance to cracking takes the form of both a decrease in plateau crack velocity and an increase in the threshold stress intensity factor for cracking (K ISCC ) as the Co content increases. The SCC fracture is intergranular and the crack path is tortuous because of the oxides and Co2Al9 intermetallic particles contained within the powder metallurgy alloys. We propose that the improvements in SCC resistance result from the Co2Al9 particles, which catalyze the recombination and evolution of hydrogen, thereby reducing hydrogen absorption and embrittlement. Formerly with Martin Marietta Laboratories  相似文献   

12.
A model to estimate the reduction of effective crack tip Mode III stress intensity factors by frictional and asperity interaction of an idealized fracture surface is described. An extension of the model is used to calculate the Mode I stress intensity factors due to the crack tip opening displacement induced by the mismatch of the fracture surface asperities. The results of calculations based on a “reasonable” fracture surface profile are used to analyze experimental studies designed to determine the relative significance of hydrogen embrittlement and crack tip dissolution in stress corrosion crack growth in Al alloys by comparison of Mode I and Mode III stress corrosion cracking (SCC) resistance. It is concluded that a pure Mode III stress state is not possible for cracks with microscopically rough surfaces and that the magnitude of the induced Mode I stress intensity factor is sufficient to cause stress corrosion crack growth.  相似文献   

13.
The film-induced cleavage model of stress-corrosion cracking (SCC) has been tested using an Ag-20 at. pct Au alloy in 1 M HClO4 solution. Brittle cracks, both intergranular (IG) and transgranular (TG) in nature, were formed by high-speed loading of a thin foil covered with a dealloyed (nanoporous gold) layer. These cracks were found to propagate through the dealloyed layer and into the uncorroded bulk face-centered cubic (fcc) material for a distance of many microns. Hydrogen embrittlement (HE) can be excluded on thermodynamic grounds; thus, only film-induced cleavage can explain the observed decoupling of stress and corrosion in the fracture process.  相似文献   

14.
Stress corrosion cracking of an Al-Li alloy   总被引:1,自引:0,他引:1  
Stress corrosion cracking (SCC) has been studied in an Al-Li alloy with variables of orientation of specimen, heat treatment, and applied potentials. The distribution of the electrochemical potential resulting from precipitate clusters was measured, and the hydrogen content on the specimen surface was detected. The results showed that the SCC susceptibility under the peakaged (PA) condition was higher than that under the natural (NA) and overaged (OA) conditions. The transverse (TL) specimen was more susceptible to SCC propagation than the longitudinal (LT) specimen. The SCC susceptibility and the hydrogen content on the specimen surface were dependent on the applied potentials. The hydrogen content increased when the applied potential changed to positive or negative directions. There was a critical hydrogen content, below which local anodic dissolution (LAD) plays an important role, above which hydrogen embrittlement (HE) plays an important role.  相似文献   

15.
Wang  Z. F.  Zhu  Z. Y.  Zhang  Y.  Ke  W. 《Metallurgical and Materials Transactions A》1992,23(1):3337-3341
Stress corrosion cracking (SCC) has been studied in an Al-Li alloy with variables of orientation of specimen, heat treatment, and applied potentials. The distribution of the electrochemical potential resulting from precipitate clusters was measured, and the hydrogen content on the specimen surface was detected. The results showed that the SCC susceptibility under the peak- aged (PA) condition was higher than that under the natural (NA) and overaged (OA) conditions. The transverse (TL) specimen was more susceptible to SCC propagation than the longitudinal (LT) specimen. The SCC susceptibility and the hydrogen content on the specimen surface were dependent on the applied potentials. The hydrogen content increased when the applied potential changed to positive or negative directions. There was a critical hydrogen content, below which local anodic dissolution (LAD) plays an important role, above which hydrogen embrittlement (HE) plays an important role.  相似文献   

16.
The relationship between susceptibility to stress-corrosion cracking (SCC) and grain boundary (GB) chemistry was investigated to elucidate the SCC mechanism in two Al-Zn-Mg alloys (Al-6.92Zn-2.85Mg-0.13Zr, Al-4.40Zn-3.70Mg; wt pct). Grain boundary chemistry was measured by Auger electron spectroscopy (AES) fromin situ fractures on the actual GB surface. The fractures were produced by pre-exposing specimens to water-vapor-saturated air, which induced hydrogen embrittlement of the GB. Susceptibility to SCC was varied by changing either solution heat-treatment temperature (SHT) or aging time. The SCC susceptibility, as measured by plateau crack velocity or reciprocal time-to-failure in a chromate-inhibited brine solution, was shown to decrease with increasing SHT and in general, to decrease with increasing aging time. “Free Mg,”i.e., unbound in MgZn2 precipitates and present in the region between two grains, was present on all boundaries, as shown by AES, but no correlation was observed between free Mg concentration and SCC susceptibility. Possible explanations for these results are discussed.  相似文献   

17.
作用应力对2.25Cr-1Mo合金钢回火脆性的影响   总被引:4,自引:0,他引:4  
在146.7MPa的作用应力下,对加氢反应器材料2.25Cr-1Mo合金钢(%:0.15C、2.32Cr、0.95Mo、0.011S、0.009P、0.0068As、0.0035Sb、0.0079Sn、0.01V)进行468℃125h和400h的等温回火脆化试验。根据加氢反应器母材试块脱脆、脆化和应力作用3种状态冲击功和温度关系曲线,得出各状态回火脆性转变温度VTr54.2(℃)值和回火脆化度ΔVTr54.2(℃)。结果表明,温度和等温时间是导致材料回火脆化的主要因素,作用应力对2.25Cr-1Mo钢回火脆性的影响不显著。  相似文献   

18.
In this study, the stress corrosion cracking (SCC) resistance of AA5083 is intentionally degraded by a series of progressively longer annealing treatments at 448 K (175 °C) that create a two-phase microstructure. Precipitation of strongly anodic Mg2Al3, known as β-phase, occurs heterogeneously with substantial precipitation along the grain boundaries, as observed by differential interference microscopy. Ultimate tensile strength, yield strength, and strain to failure of AA5083 alloy were found to be independent of the amount of β-phase precipitates, making AA5083 an ideal system to study the relative contributions of anodic dissolution and hydrogen embrittlement. Open circuit dropwise exposure SCC tests with precracked double cantilever beam (DCB) specimens made from the AA5083 alloy with different heat treatment conditions were conducted using 3.5 pct NaCl solution at an initial stress intensity factor (K I ) of \( 1 5\,{\text{ksi}}\sqrt {\text{in}} .\;\left( { 1 6. 5\,{\text{MPa}}\sqrt {\text{m}} } \right). \) Two SCC characteristics, initial crack growth rate and incubation time, were found to be strongly dependent on the amount of β-phase precipitates. Initial crack growth rate increased sigmoidally as a function of heat treatment time with an inflection point between 120 and 240 hours of sensitization time, while the incubation time decreases monotonically with sensitization time. Additionally, fracture surfaces investigated by scanning electron microscopy demonstrated characteristics of intergranular cracking with multiple crack tips. Discussion centers on the evidence supporting anodic dissolution of β-phase grain boundary precipitates as a primary mechanism of SCC in severely sensitized AA5083 alloy and the potential contribution of hydrogen embrittlement in the failure of grain boundary ligaments between β-phase grain boundary precipitates in less severely sensitized conditions.  相似文献   

19.
Recent studies have revealed that the mechanism of stress-corrosion cracking (SCC) of high-strength Al-Zn-Mg alloys involves both dissolution and hydrogen embrittlement (HE); moreover, under tensile-loading conditions, evidence exists that the hydrogen mechanism is dominant. In the present study, the role of HE in the SCC of Al-Mg alloys was investigated using commercial Al-4.4 wt pct Mg alloy, 5083. The susceptibility of this alloy to SCC in a saline environment was evaluated in Mode I (tension) and Mode III (torsion), using precracked fracture toughness specimens. The greater susceptibility found in Mode I indicates that HE is involved in SCC. As further evidence that HE is operating, susceptibility increased when As, a hydrogen recombination inhibitor, was added to the test solution under Mode I conditions. Issues related to the overall validity of the loading mode experiment are also addressed.  相似文献   

20.
Fitness-for-service evaluations of engineered components that are subject to environment assisted cracking (EAC) often require analyses of potentially large crack extensions through regions of variable stress intensity. However, there are few EAC data and models that directly address the effects of variable stress intensity factor on EAC crack growth. The model developed here is used to evaluate stress corrosion cracking (SCC) data that were obtained on a high-strength beta-titanium alloy under conditions of variable crack mouth opening displacement (CMOD) rate. SCC of this Ti alloy in ambient temperature, near-neutral NaCl aqueous solution is thought to be due to hydrogen environment assisted cracking (HEAC). As the model equations developed here do not admit to a closed form solution for crack velocity as a function of applied stress intensity factor, K, a semiquantitative graphical solution is used to rationalize the crack growth data. The analyses support a previous suggestion that the observed crack growth rate behavior can be attributed to the effect of crack tip strain rate on rates of mechanical disruption and repair of an otherwise protective crack tip oxide film. Model elements introduced here to HEAC modeling include (1) an expression relating corrosion-active surface area to crack tip strain rate and repassivation rate, (2) an expression relating the critical grain boundary hydrogen to the applied stress intensity factor, and (3) an expression relating CTSR to both applied and crack advance strain rate components. Intergranular crack advance is modeled assuming diffusive segregation of corrosion-generated hydrogen to grain boundary trap sites causing embrittlement of the fracture process zone (FPZ). The model equations developed here provide a quantitative basis for understanding the physical significance of K-variation effects and, with additional development, will provide an engineering tool for analysis of crack growth in a variable K field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号