首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine-rich domains (Cys-domains) are approximately 50-amino acid-long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-gamma (Cys1-GFP). Strikingly, stimulation of G-protein or tyrosine kinase-coupled receptors induced a transient translocation of cytosolic Cys1-GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1-GFP in the membrane, whereas DiC8 left Cys1-GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1-GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-gamma also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2-GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester-mediated translocation of proteins to selective lipid membranes.  相似文献   

2.
Doc2 has two C2 domains that interact with Ca2+ and phospholipid. Munc13 has two C2 domains and one C1 domain that interacts with phorbol ester or diacylglycerol (DAG) and phospholipid. Both Doc2 and Munc13 are implicated in Ca2+-dependent neurotransmitter release, but their modes of action still remain unclear. We show here that Doc2 interacts with Munc13 both in a cell-free system and in intact PC12 cells during the high K+-induced Ca2+-dependent exocytosis. The Doc2-Munc13 interactions are stimulated by phorbol ester through the C1 domain of Munc13. Overexpression of the Doc2-interacting domain of Munc13 reduces the Ca2+-dependent exocytosis from PC12 cells, and co-expression with Doc2 suppresses this reduction. These results, together with the earlier findings that secretagogues produce DAG and elevate cytoplasmic Ca2+, suggest that the DAG-induced Doc2-Munc13 interactions play an important role in Ca2+-dependent exocytotic machinery.  相似文献   

3.
The type II protein kinase C (PKC-II) densely present in mammalian brain plays functional roles in CNS. We examined the characteristics of [3H]staurosporine binding to PKC-II purified from rat brain, compared to [3H]phorbol 12, 13-dibutyrate (PDBu) binding. In brief, [3H]staurosporine binding increased by phosphatidylserine (PtdSer) in a concentration-dependent manner and the binding was enhanced by Ca2+ and phorbol 12-myristate 13-acetate (PMA). In the presence of Ca2+, PMA and PtdSer, Bmax of these bindings markedly increased, but KD did not change. These characteristics of binding were similar to [3H]PDBu binding to PKC-II. Although [3H]PDBu binding was not affected by protein kinase inhibitors such as staurosporine, H-7, K-252a and K-252b, [3H]staurosporine binding was inhibited by these inhibitors. [3H]staurosporine binding was inhibited by several ATP analogues, but was not by guanine nucleotides. PtdSer-induced increase in [3H]PDBu binding was inhibited by Zn2+, but Zn2+ induced increase in [3H]staurosporine binding as well as PtdSer and/or Ca2+. Staurosporine would thus appear to bind to a domain different from phorbol ester-binding one in PKC, interactions between both domains may regulate kinase activity, and 1 mol staurosporine and 4 mol phorbol ester may bind to 1 mol PKC-II.  相似文献   

4.
The key signal transduction enzyme protein kinase C (PKC) contains a hydrophobic binding site for alcohols and anesthetics (Slater, S. J., Cox, K. J. A., Lombardi, J. V., Ho, C., Kelly, M. B., Rubin, E., and Stubbs, C. D. (1993) Nature 364, 82-84). In this study, we show that interaction of n-alkanols and general anesthetics with PKCalpha results in dramatically different effects on membrane-associated compared with lipid-independent enzyme activity. Furthermore, the effects on membrane-associated PKCalpha differ markedly depending on whether activity is induced by diacylglycerol or phorbol ester and also on n-alkanol chain length. PKCalpha contains two distinct phorbol ester binding regions of low and high affinity for the activator, respectively (Slater, S. J., Ho, C., Kelly, M. B., Larkin, J. D., Taddeo, F. J., Yeager, M. D., and Stubbs, C. D. (1996) J. Biol. Chem. 271, 4627-4631). Short chain n-alkanols competed for low affinity phorbol ester binding to the enzyme, resulting in reduced enzyme activity, whereas high affinity phorbol ester binding was unaffected. Long chain n-alkanols not only competed for low affinity phorbol ester binding but also enhanced high affinity phorbol ester binding. Furthermore, long chain n-alkanols enhanced phorbol ester induced PKCalpha activity. This effect of long chain n-alkanols was similar to that of diacylglycerol, although the n-alkanols alone were weak activators of the enzyme. The cellular effects of n-alkanols and general anesthetics on PKC-mediated processes will therefore depend in a complex manner on the locality of the enzyme (e.g. cytoskeletal or membrane-associated) and activator type, apart from any isoform-specific differences. Furthermore, effects mediated by interaction with the region on the enzyme possessing low affinity for phorbol esters represent a novel mechanism for the regulation of PKC activity.  相似文献   

5.
The molecular chaperone hsp90 in the eukaryotic cytosol interacts with a variety of protein cofactors. Several of these cofactors have protein domains containing tetratricopeptide repeat (TPR) motifs, which mediate binding to hsp90. Using a yeast two-hybrid screen, the 12-kDa C-terminal domain of human hsp90alpha (C90) was found to mediate the interaction of hsp90 with TPR-containing sequences from the hsp90 cofactors FKBP51/54 and FKBP52. In addition, the mitochondrial outer membrane protein hTOM34p was identified as a TPR-containing putative partner protein of hsp90. In experiments with purified proteins, the TPR-containing cofactor p60 (Hop) was shown to form stable complexes with hsp90. A deletion mutant of hsp90 lacking the C90 domain was unable to bind p60, whereas deletion of the approximately 25-kDa N-terminal domain of hsp90 did not affect complex formation. Both p60 and FKBP52 bound specifically to the C90 domain fused to glutathione S-transferase and competed with each other for binding. In reticulocyte lysate, the C90 fusion protein recognized the TPR proteins p60, FKBP52, and Cyp40. Thus, our results identify the C90 domain as the specific binding site for a set of hsp90 cofactors having TPR domains.  相似文献   

6.
There are two protein kinase Cs (PKCs) in the Aplysia nervous system, PKC Apl I, which is homologous to the Ca(2+)-activated PKC family, and PKC Apl II, which is homologous to the Ca(2+)-independent PKCs epsilon and eta. Purified PKC Apl I requires much less phosphatidylserine for activation than does purified PKC Apl II, and this may explain why the neurotransmitter serotonin activates PKC Apl I but not PKC Apl II in the intact nervous system [Sossin, W. S., Fan, X., and Baseri, F. (1996) J. Neurosci. 16, 10-18]. PKC Apl II's requirement for high levels of phosphatidylserine may be mediated by its C2 domain, since removal of this domain allows PKC Apl II to be activated at lower concentrations of phosphatidylserine. To begin to understand how this inhibition is mediated, we generated fusion proteins containing the C1 and C2 domains from PKC Apl II and determined their lipid dependence for phorbol ester binding. Our results indicate that the presence of the C2 domain lowers the affinity of protein kinase C activators for the C1 domains and this inhibition can be removed by phosphatidylserine. Phosphatidic acid, however, is much more potent than phosphatidylserine in reducing C2 domain-mediated inhibition, suggesting that phosphatidic acid may be a required cofactor for the activation of PKC Apl II.  相似文献   

7.
8.
Rab3A is a small GTPase implicated in the docking of secretory vesicles in neuroendocrine cells. A putative downstream target for Rab3A, rabphilin-3A, is located exclusively on secretory vesicle membranes. It contains near its C terminus two C2 domains that bind Ca2+ in a phospholipid-dependent manner and an N-terminal, Rab3A-binding domain that includes a Cys-rich region. We have determined that the Cys-rich domain binds two Zn2+ ions and is necessary but not sufficient for efficient binding of rabphilin to Rab3A. A minimal Rab3A-binding domain consists of residues 45 to 170 of rabphilin. HA1-tagged Rab3A and a green fluorescent protein (GFP)-rabphilin fusion were used to examine the roles of Rab3A and of rabphilin domains in the subcellular localization of these proteins. A Rab3A mutant (T54A) that does not bind rabphifin in vitro colocalized with the GFP-rabphilin fusion, indicating that Rab3A targeting is independent of its interaction with rabphilin. Deletion of the C2 domains of rabphilin reduced membrane association of GFP-rabphilin but did not cause mistargeting of the membrane-associated fraction. However, disruption of the zinc fingers, which drastically reduced Rab3A binding, did not reduce membrane association. These results suggest that the C2 domains are required for efficient membrane attachment of rabphilin in PC12 cells and that Rab3A binding may act to target the protein to the correct membrane.  相似文献   

9.
Classical protein kinase C (PKC) family members are activated by the binding of various ligands to one of several cysteine-rich domains of the enzyme. The natural agonist, diacylglycerol (DAG), and the natural product superagonist, phorbol dibutyrate (PDB), activate the enzyme to produce wide-ranging physiological effects. The second cysteine-rich (Cys2) domain of rat brain PKC-gamma was expressed and labeled with 15N and 13C, and the solution structure was determined to high resolution using multidimensional heteronuclear NMR methods. The phorbol binding site was identified by titrating this domain with phorbol-12,13-dibutyrate (PDB) in the presence of organic cosolvents. Titrations of this domain with lipid micelles, in the absence and presence of phorbols, indicate selective broadening of some resonances. The observed behavior indicates conformational exchange between bound and free states upon protein-micelle interaction. The data also suggest that half of the domain, including the phorbol site and one of the zinc sites, is capable of inserting into membranes.  相似文献   

10.
In the nervous system of the marine mollusk Aplysia there are two protein kinase C (PKC) isoforms, the Ca2+-activated PKC Apl I and the Ca2+-independent PKC Apl II. PKC Apl I, but not PKC Apl II is activated by a short-term application of the neurotransmitter serotonin. This may be explained by the fact that purified PKC Apl II requires a higher mole percentage of phosphatidylserine to stimulate enzyme activity than does PKC Apl I. In order to understand the molecular basis for this difference, we have compared the ability of lipids to interact with the purified kinases and with regulatory domain fusion proteins derived from the kinases using a variety of assays including kinase activity, phorbol dibutyrate binding, and liposome binding. We found that a C2 domain fusion protein derived from PKC Apl I binds to lipids constitutively, while a C2 domain fusion protein derived from PKC Apl II does not. In contrast, fusion proteins containing the C1 domains of PKC Apl I and PKC Apl II showed only small differences in lipid interactions. Thus, while the presence of a C2 domain assists lipid-mediated activation of PKC Apl I, it inhibits activation of PKC Apl II.  相似文献   

11.
The 3.0-A structure of a 190-residue fragment of intercellular adhesion molecule-1 (ICAM-1, CD54) reveals two tandem Ig-superfamily (IgSF) domains. Each of two independent molecules dimerizes identically with a symmetry-related molecule over a hydrophobic interface on the BED sheet of domain 1, in agreement with dimerization of ICAM-1 on the cell surface. The residues that bind to the integrin LFA-1 are well oriented for bivalent binding in the dimer, with the critical Glu-34 residues pointing away from each other on the periphery. Residues that bind to rhinovirus are in the flexible BC and FG loops at the tip of domain 1, and these and the upper half of domain 1 are well exposed in the dimer for docking to virus. By contrast, a residue important for binding to Plasmodium falciparum-infected erythrocytes is in the dimer interface. The presence of A' strands in both domains 1 and 2, conserved hydrogen bonds at domain junctions, and elaborate hydrogen bond networks around the key integrin binding residues in domain 1 make these domains suited to resist tensile forces during adhesive interactions. A subdivision of the intermediate (I) set of IgSF domains is proposed in which domain 1 of ICAM-1 and previously described I set domains belong to the I1 set and domain 2 of ICAM-1, ICAM-2, and vascular cell adhesion molecule-1 belong to the I2 set.  相似文献   

12.
The binding of the calcium-regulatory protein calmodulin (CaM) to caldesmon (CaD) contributes to the regulation of smooth muscle contraction. Two regions of caldesmon have been identified as putative calmodulin-binding domains. We have earlier reported on the binding of one of these domains to calmodulin (Zhang & Vogel (1994) Biochemistry 33, 1163-1171). Here we have studied the binding of CaM to synthetic peptides of CaD which contain: (1) both the first and second CaM-binding domains; (2) the second CaM-binding domain; and (3) the sequence between the first and second CaM-binding domains. Two-dimensional transferred nuclear Overhauser enhancement proton NMR measurements as well as circular dichroism studies of a 22-residue peptide NKETAGLKVGVSSRINEWLTK, which contains the second CaM-binding domain, show that only the C-terminal half of the peptide becomes alpha-helical upon binding to CaM. Somewhat surprisingly, the shorter 9-residue peptide SRINEWLTK was sufficient to form a 1:1 complex with CaM; this peptide appears to bind as a 3(10)-helix. Proton-carbon-13 correlation NMR titration studies with specifically labeled [methyl-13C]methionine CaM were used to study the participation of the hydrophobic regions in both domains of the dumbbell shaped CaM in peptide binding. Binding of a 54-residue CaD peptide containing both CaM-binding domains affects all the 8 Met residues in the two hydrophobic domains of CaM (only Met 76 in the linker region of CaM is not involved), while binding of the second CaM-binding domain of CaD influences principally Met 51, 71, and Met 124, 144. Simultaneous binding to CaM of two peptides comprising the first and the second CaM-binding domains also caused changes to all Met residues except Met 76. Taken together, these data demonstrate that both CaM-binding domains of CaD can bind simultaneously to the two hydrophobic regions of CaM.  相似文献   

13.
14.
The binding mode of DAG-lactones to PK-C was investigated using the C1b domain from the X-ray structure of the phorbol ester/C1b complex of PK-C delta as a template. Modeling experiments revealed two binding alternatives in which one of the carbonyls of the DAG lactones remained uninvolved with the protein. Experimentally, however, the removal of either sn-1 or sn-2 carbonyls caused a dramatic drop in binding affinity towards PK-C. Although it was not possible to discriminate between the two binding alternatives of the DAG-lactones, the study demonstrates an important role for the additional carbonyl group. The function of this group could be equivalent to that of the C-9(OH)/C-13 (C = O) motif in phorbol esters, which also appears free of interactions in the phorbol ester/C1b complex. This role presumably reflects interaction with the phosholipid head groups required for high affinity binding under the conditions of the biological assays.  相似文献   

15.
Pleckstrin homology (PH) domains are recognized in more than 100 different proteins, including mammalian phosphoinositide-specific phospholipase C (PLC) isozymes (isotypes beta, gamma, and delta). These structural motifs are thought to function as tethering devices linking their host proteins to membranes containing phosphoinositides or beta gamma subunits of heterotrimeric GTP binding (G) proteins. Although the PH domains of PLC-delta and PLC-gamma have been studied, the comparable domains of the beta isotypes have not. Here, we have measured the affinities of the isolated PH domains of PLC-beta 1 and -beta 2 (PH-beta 1 and PH-beta 2, respectively) for lipid bilayers and G-beta gamma subunits. Like the intact enzymes, these PH domains bind to membrane surfaces composed of zwitterionic phosphatidylcholine with moderate affinity. Inclusion of the anionic lipid phosphatidylserine or phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and inclusion of G-beta gamma subunits had little affect on their membrane affinity. In contrast, binding of PLC-delta 1 or its PH domain was highly dependent on PI(4,5)P2. We also determined whether these domains laterally associate with G-beta gamma subunits bound to membrane surfaces using fluorescence resonance energy transfer. Affinities for G-beta gamma were in the following order: PH-beta 2 >/= PH-beta 1 > PH-delta 1; the affinities of the native enzyme were as follows: PLC-beta 2 > PLC-delta 1 > PLC-beta 1. Thus, the PH domain of PLC-beta 1 interacts with G-beta gamma in isolation, but not in the context of the native enzyme. By contrast, docking of the PH domain of PLC-beta2 with G-beta gamma is comparable to that of the full-length protein and may play a key role in G-beta gamma recognition.  相似文献   

16.
Ethylene-responsive element-binding proteins (EREBPs)have novel DNA-binding domains (ERF domains), which are widely conserved in plants, and interact specifically with sequences containing AGCCGCC motifs (GCC box). Deletion experiments show that some flanking region at the N terminus of the conserved 59-amino acid ERF domain is required for stable binding to the GCC box. Three ERF domain-containing fragments of EREBP2, EREBP4, and AtERF1 from tobacco and Arabidopsis, bind to the sequence containing the GCC box with a high binding affinity in the pM range. The high affinity binding is conferred by a monomeric ERF domain fragment, and DNA truncation experiments show that only 11-base pair DNA containing the GCC box is sufficient for stable ERF domain interaction. Systematic DNA mutation analyses demonstrate that the specific amino acid contacts are confined within the 6-base pair GCCGCC region of the GCC box, and the first G, the fourth G, and the sixth C exhibit highest binding specificity common in all three ERF domain-containing fragments studied. Other bases within the GCC box exhibit modulated binding specificity varying from protein to protein, implying that these positions are important for differential binding by different EREBPs. The conserved N-terminal half is likely responsible for formation of a stable complex with the GCC box and the divergent C-terminal half for modulating the specificity.  相似文献   

17.
The phosphotyrosine interaction (PI) domains (also known as the PTB, or phosphotyrosine binding, domains) of Shc and IRS-1 are recently described domains that bind peptides phosphorylated on tyrosine residues. The PI/PTB domains differ from Src homology 2 (SH2) domains in that their binding specificity is determined by residues that lie amino terminal and not carboxy terminal to the phosphotyrosine. Recently, it has been appreciated that other cytoplasmic proteins also contain PI domains. We now show that the PI domain of X11 and one of the PI domains of FE65, two neuronal proteins, bind to the cytoplasmic domain of the amyloid precursor protein ((beta)APP). (beta)APP is an integral transmembrane glycoprotein whose cellular function is unknown. One of the processing pathways of (beta)APP leads to the secretion of A(beta), the major constituent of the amyloid deposited in the brain parenchyma and vessel walls of Alzheimer's disease patients. We have found that the X11 PI domain binds a YENPTY motif in the intracellular domain of (beta)APP that is strikingly similar to the NPXY motifs that bind the Shc and IRS-1 PI/PTB domains. However, unlike the case for binding of the Shc PI/PTB domain, tyrosine phosphorylation of the YENPTY motif is not required for the binding of (beta)APP to X11 or FE65. The binding site of the FE65 PI domain appears to be different from that of X11, as mutations within the YENPTY motif differentially affect the binding of X11 and FE65. Using site-directed mutagenesis, we have identified a crucial residue within the PI domain involved in X11 and FE65 binding to (beta)APP. The binding of X11 or FE65 PI domains to residues of the YENPTY motif of (beta)APP identifies PI domains as general protein interaction domains and may have important implications for the processing of (beta)APP.  相似文献   

18.
Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a member of the membrane-associated guanylate kinase (MAGUK) family of PDZ domain-containing proteins. MAGUKs are widely expressed in the brain and are critical elements of the cytoskeleton and of certain synapses. In the ultrastructural studies that are described here, PSD-93 localizes to both postsynaptic densities and dendritic microtubules of cerebellar Purkinje neurons. The microtubule localization is paralleled by a high-affinity in vivo interaction of PSD-93 via its guanylate kinase (GK) domain with microtubule-associated protein 1A (MAP1A). GK domain truncations that mimic genetically identified mutations of a Drosophila MAGUK, discs-large, disrupt the GK/MAP-1A interaction. Additional biochemical experiments demonstrate that intact MAGUKs do not bind to MAP1A as effectively as do isolated GK domains. This appears to be attributable to an intramolecular inhibition of the GK domain by the PDZs, because GK binding activity of full-length MAGUKs is partially restored by a variety of PDZ ligands, including the C termini of NMDA receptor 2B, adenomatous polyposis coli (APC), and CRIPT. Beyond demonstrating a novel cytoskeletal link for PSD-93, these experiments support a model in which intramolecular interactions between the multiple domains of MAGUKs regulate intermolecular associations and thereby may play a role in the proper targeting and function of MAGUK proteins.  相似文献   

19.
Protein kinase C (PKC) represents the major, high-affinity receptor for the phorbol esters as well as for a series of structurally diverse natural products. The phorbol esters function by binding to the tandem C1a and C1b domains in PKC, leading to enzyme activation. Although the typical phorbol esters represent the paradigm for tumor promoters in mouse skin, it is now clear that different high affinity ligands for PKC have distinct biological effects. Thus, the daphnane analogue mezerein is a second-stage promoter, the macrolide bryostatin 1 is a partial antagonist, and certain 12-deoxyphorbol 13-monoesters also function as partial antagonists but with a different pattern of activity. The biochemical basis for these differences is an area of active investigation. In this report, we have examined the relative interaction of ligands differing in structure and pattern of biological response with the C1a and C1b domains of PKCdelta. We mutated either or both of the C1 domains of PKCdelta, expressed the constructs in NIH 3T3 cells, and monitored the interaction of the ligands by their ability to induce translocation of the mutated PKCdelta from the cytosol to the particulate fraction. We found that different ligands showed different dependence on the C1a and C1b domains for translocation. Whereas phorbol 12-myristate 13-acetate and the indole alkaloids indolactam and octylindolactam were selectively dependent on the C1b domain, selectivity was not observed for mezerein, for the 12-deoxyphorbol 13-monoesters prostratin or 12-deoxyphorbol 13-phenylacetate, or for the macrocyclic lactone bryostatin 1. Provocatively, the pattern of response corresponds with the activity of the compounds as complete tumor promoters.  相似文献   

20.
Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (mu, delta, and kappa), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of mu- and delta-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which mu-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [D-Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed "reverse translocation." The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and mu-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-alpha) and novel (PKC-epsilon) isoforms, SH-SY5Y cells also contain a DAG- and Ca2+-independent, atypical PKC isozyme (PKC-zeta), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-zeta is similarly sensitive to activation by mu-opioids. PKC-zeta translocates from the cytosol to the membrane with kinetics similar to those of PKC-alpha and epsilon in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by mu-opioid agonists is involved in the processes that result in mu-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号