首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用应力松弛实验研究了Zr--4合金的热激活变形与动态应变时效现象. 结果表明, 合金在应力松弛过程中的塑性变形速率随松 弛时间的增加而减小, 塑性变形速率和松弛结束时的应力降低比率在623 K附近都会出现最小值. 对位错运动的激活体积分析发现, 锆合金中位错运动的速率控制机制是位错克服溶质原子的障碍, 动态应变时效会导致位错运动的激活体积增大, 623 K附近动态应变时效最为显著, 位错密度会对合金的动态应变时效产生影响.  相似文献   

2.
Zr-4合金应力松弛过程中的热激活变形与动态应变时效   总被引:1,自引:0,他引:1  
采用应力松弛实验研究了Zr-4合金的热激活变形与动态应变时效现象.结果表明,合金在应力松弛过程中的塑性变形速率随松弛时间的增加而减小,塑性变形速率和松弛结束时的应力降低比率在623 K附近都会出现最小值.对位错运动的激活体积分析发现,锫合金中位错运动的速率控制机制是位错克服溶质原子的障碍,动态应变时效会导致位错运动的激活体积增大,623 K附近动态应变时效最为显著,位错密度会对合金的动态应变时效产生影响.  相似文献   

3.
J. Lapin   《Intermetallics》2006,14(12):1417-1427
The effect of directional solidification and heat treatments on the microstructure and mechanical properties of intermetallic Ni–21.29Al–7.04Cr–1.46Ta–0.64Mo–0.57Zr (at.%) alloy was studied. Increasing growth rate is found to decrease primary dendrite arm spacing and to increase volume fraction of β(NiAl)-based dendrites and low melting point γ′(Ni3Al)/Ni5Zr eutectic. Room-temperature tensile yield strength and ultimate tensile strength increase and plastic elongation to fracture decreases with the increasing growth rate. Two types of heat treatments of directionally solidified (DS) specimens including two-step ageing at temperatures of 1273 and 1123 K and two-step solution annealing at 1373 and 1493 K were performed. Ageing at 1273 and 1123 K decreases volume fractions of the dendrites and eutectic regions and leads to a coarsening of spherical -Cr and needle-like γ′ precipitates within the β-phase. Annealing at 1373 K for 100 h is shown to be sufficiently long to completely dissolve the eutectic regions. Compressive yield strength increases with increasing temperature reaching a peak value at about 1023 K and then decreases at higher temperatures. Minimum creep rate is found to depend strongly on the applied stress and temperature according to a power law. The power law stress exponent n is determined to be 5.1 and apparent activation for creep Qa is measured to be 326 kJ/mol.  相似文献   

4.
祝东  蔡其巩 《金属学报》1991,27(1):61-67
本文研究了12Ni3CrMoVA合金钢流变应力随温度及应变速率的变化规律,以及组织因素的影响,测算了该材料激活能及激活体积等热激活参数。根据P-N机制由螺型位错芯结构分析了bcc金属的塑性形变规津,该规律同试验结果吻合,说明有效应力与温度关系曲线中的拐点是由于Peierls势能呈双驼峰分布所致,相应的位错线激活态形状呈双扭折对分布。显微组织仅影响位错的长程障碍阻力,而对位错热激活运动没有影响。  相似文献   

5.
在较宽温度和应变率范围内,对等径通道挤压(ECAP)方法制备的超细晶铝进行单轴压缩试验,研究温度对流动应力、应变硬化率和应变率敏感性的影响。结果表明:ECAP铝与粗晶粒度铝相比,温度对其流动应力和应变率敏感性的影响更大,超细晶铝的温度敏感性较粗晶粒度铝弱。根据试验结果,估计了不同温度和应变率下的表观激活体积。ECAP铝在准静态应变率下,与林位错相互作用是主导的热激活机制,而粘曳在高应变率下起着更重要的作用。  相似文献   

6.
In order to explain steady-state plastic deformation, i.e. the absence of strain hardening in ultrafine grained low carbon steel during tensile deformation, steel of different ferrite grain sizes was prepared by intense plastic straining followed by static annealing and then tensile-tested at room temperature. A comparison between the ferrite grain size of ultrafine grained steel and the dislocation cell size of coarse grained steel formed during tensile deformation revealed that uniform dislocation distribution with high density and cell formation were unlikely to occur in this ultrafine grained steel. This is ascribed to the fact that the ultrafine grain size is comparable to or smaller than the cell size at the corresponding stress level. In addition, from a consideration of dynamic recovery, it was found that the characteristic time for trapped lattice dislocations to spread into the grain boundaries was so fast that the accumulation of lattice dislocation causing strain hardening could not occur under this ultrafine grain size condition. Therefore, the extremely low strain hardening rate of ultrafine grained low carbon steel during tensile deformation is attributed to the combined effects of the two main factors described above.  相似文献   

7.
《Acta Materialia》2004,52(6):1699-1709
In nanostructured metals with grain sizes of the order of 100 nm, dislocation mechanisms remain dominant in controlling plastic deformation. These materials, similar to their coarse-grained counterparts that have been subjected to heavy cold work, can no longer go through the several strain hardening stages of normal metals and are hence susceptible to plastic instabilities such as necking in tension. For processing and applications, it is obviously important and often necessary to control such inhomogeneous plastic deformation. Here we demonstrate three strategies to achieve relatively large stable tensile deformation in nanostructured metals, using the pure Cu processed by equal channel angular pressing as a model. The first approach uses an in situ formed composite-like microstructure, such as a bimodal grain size distribution, to impart strain hardening to the material and attain large uniform tensile strains while maintaining the majority of the strengthening brought forth by nanostructuring. In the second route, deformation is conducted at low temperatures, such as 77 K. The material regains the ability to work harden due to suppressed dynamic recovery. Uniform elongation is achieved as a result, together with an elevated strength at the cryogenic temperature. The third method takes advantage of the elevated strain rate sensitivity of the flow stress of the nanostructured Cu, especially at slow strain rates. Using the stabilizing effects of strain rate hardening on tensile deformation, nearly uniform strains can be acquired in absence of strain hardening. We also discuss the deformation mechanisms involved in these approaches to assess their applicability to nanocrystalline metals with grain sizes well below 100 nm, where normal dislocation activities become severely suppressed.  相似文献   

8.
《Acta Materialia》2001,49(19):3935-3947
The role of strain hardening for the deformation of thin Cu films was investigated quantitatively by conducting specialized tensile testing allowing the simultaneous characterization of the film stress and the dislocation density as a function of plastic strain. The stress–strain behavior was studied as a function of microstructural parameters of the films, such as film thickness (0.4–3.2 μm), grain size and texture. It was found that the stress–strain behavior can be divided into three regimes, i.e. elastic, plastic with strong strain hardening and plastic with weak hardening. The flow stresses and the hardening rate increase with decreasing film thickness and/or grain size, and are about two times higher in (111)-grains compared to the (100)-grains. These effects will be discussed in the light of existing models for plastic deformation of thin films or fine grained metals.  相似文献   

9.
Microelectromechanical systems (MEMS) have become increasingly prevalent in engineering applications. In these MEMS, a lot of micro-components, such as thin films, nanowires, micro-beams and micropillars, are utilized. The characteristic geometrical size of those components is at the same scale as that of grain, the mechanical behavior of crystal materials exhibits significant size effect and discontinuous deformation. In addition, those MEMS are often subjected to high strain rate at work, such collision and impact loading. The coupling deformation characteristics of small scale crystals and high strain rate makes their mechanical behavior more complicated. Accordingly, investigation of the effect of the strain rate on crystal materials at micron scale is significant for both the academia and industry. In this work, a plastic deformation model of fcc crystal under axial compression was developed based on three-dimensional discrete dislocation dynamics (3D-DDD), which considered the influence of externally applied stress, interaction force between dislocation segments, dislocation line tension and image force from free surface on dislocation movement during the process of plastic deformation. It was applied to simulate the plastic deformation process of a Ni single crystal micropillar during compression under different loading strain rates. 3D-DDD and theoretical analysis are carried out to extensively investigate the effect of strain rate on flow stress and deformation mechanisms during plastic deformation process of crystal materials. The results show that the flow stress and the dislocation density increased with the loading strain rate. In the case of low strain rate, the flow stress was dominated by the activation stress of FreakRead (FR) source in plastic deformation. With the increase of strain rate, the contribution of activation stress of FR source to the flow stress decreases and the effective stress gradually dominated the flow stress. Under high strain rate loading, with the increase of the initial FR source, the dislocation density also increased at the same strain correspondingly, which makes it easier to meet the requirement of the loading strain rate, so the flow stress is smaller. In addition, under the low strain rate loading, a few activated FR sources can meet the requirement of the plastic deformation, a single slip deformation come up as a result. While, as the loading strain rate increases, more and more activated FR sources would be needed to coordinate the plastic deformation, the deformation mechanisms of the single crystal micropillar transformed from single slip to multiple slip.  相似文献   

10.
The tensile properties of Fe–18Mn–0.6C with Al-alloying additions of 0, 1.5 and 2.5 wt.% were investigated in the temperature range from 213 K (?60 °C) to 413 K (140 °C). The addition of Al resulted in an increase of the yield strength due to solid solution hardening and a decrease of the work hardening due to the suppression of deformation twinning. Both the decrease of the deformation temperature and the addition of Al suppressed the dynamic strain aging, clearly indicating an interaction between the stacking fault region of the mobile dislocation and Mn–C point defect complexes. A constitutive model for the temperature dependence of the flow stress, taking into account the thermally activated dislocation glide, Al solid solution hardening and the dynamic Hall–Petch effect caused by deformation twinning, was developed.  相似文献   

11.
The effect of trace levels of Ni on the intermediate temperature creep behavior of the alloy Ti–6Al–2Sn–4Zr–2Mo (wt%) has been investigated. Creep experiments were performed in tension over the temperature range 510–565 °C at stress range 138–413 MPa. Two heats of commercial grade Ti–6Al–2Sn–4Zr–2Mo with Ni levels of 0.006 and 0.035 wt% were studied. The high Ni material uniformly exhibited higher primary creep strains and minimum strain rates than the lower Ni material. Stress exponents in the range 5–7 and 4–6 were obtained for the high Ni and low Ni material respectively. At 565 °C a transition to a low stress region with a stress exponent equal 1 is found for both materials. At all stress levels, the apparent activation energy was lower for the high Ni material. The apparent activation energy is in excellent agreement with those reported for lattice self-diffusion in -titanium in the presence of fast diffusing impurities. The results also suggest that creep in the higher stress regime is controlled by dislocation motion within the -phase. We suggest that trace levels of Ni in the -phase accelerate self-diffusion therefore increasing the rate of dislocation climb leading to the higher creep rates observed in the high Ni material. In Part II, direct evidence in support of dislocation-based creep being important in both low and high stress regimes is presented.  相似文献   

12.
Fe3Si polycrystals having a large initial grain size of about 92 μm exhibit a large tensile elongation exceeding 200% at 1173 K and at 4.68×10−4 s−1. A stress–strain curve corresponding to the large tensile elongation is characterized by a steady state flow after an initial work hardening at a small plastic strain until final fracture. The apparent activation energy and strain rate sensitivity index is estimated to be 120 kJ/mol and 0.30, respectively. The deformation microstructure responsible for the large elongation consists of a well-defined subgrain microstructure with a low dislocation density within dynamic recrystallization (DRX) grains evolved during high temperature deformation. Large elongation is achieved by glide motion of 〈001〉 type dislocations. It is suggested that glide and climb motion of 〈001〉 type dislocations leads to simultaneous and/or alternate occurrence of DRX and dynamic recovery (DRV), which retards the initiation of plastic instability and results in large elongation.  相似文献   

13.
Microstructures of 76Mo–14Si–10B, 77Mo–12Si–8B–3Al, and 73.4Mo–11.2Si–8.1B–7.3Al alloys, processed by reaction hot pressing of elemental powder mixtures, have shown -Mo, Mo3Si, and Mo5SiB2 phases. In addition, particles of SiO2 formed from the oxygen content of raw materials could be seen in the 76Mo–14Si–10B alloy, while -Al2O3 formed in the alloys containing Al. Parts of the Al have been found within the solid solutions of -Mo and Mo3Si. The average fracture toughness determined from indentation crack lengths and three-point bend testing of single edge notch bend specimens lies in the range of 5.0–8.7 MPa√m, with alloys containing Al demonstrating higher values. Analyses of load-displacement plots, fracture profiles and indentation crack paths have shown evidence of R-curve type behaviour and operating toughening mechanisms involving crack bridging by -Mo, crack deflection and branching. Flexural strength is related to volume fraction of the -Mo and Al content. Compression tests on the 76Mo–14Si–10B alloy between 1100 °C and 1350 °C have shown excellent strength retention, and evidence of thermally activated plastic flow.  相似文献   

14.
对航空发动机用新型镍基高温合金GH3230在不同温度和应变速率下进行了高温拉伸-断裂试验,分析了应变速率和温度对该合金高温力学性能的影响。结果表明,随着应变速率的增加和温度的下降,合金的塑性流动应力有所提高,加工硬化指数下降。从流变应力、应变速率和温度的相关性,得到应变速率敏感系数是一个独立于温度的常量,并计算出GH3230合金的变形激活能=441 kJ/mol。GH3230合金的热变形温度在1273 K左右时,合金在变形过程中能够充分再结晶,并得到晶粒细小、均匀的组织。SEM断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为10-3~10-1 s-1时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

15.
在温度为250~450 ℃、应变速率为1×10-4-1 s-1的条件下,对超细晶工业纯钛进行变速率压缩实验,计算超细晶工业纯钛的应变速率敏感性因子和激活体积,并研究超细晶工业纯钛的变形行为。研究结果表明:超细晶工业纯钛在稳态变形阶段存在流变软化效应,这是受变形过程中大角度晶界和位错活动所控制的。超细晶工业纯钛的应变速率敏感性因子和激活体积在数值上都相对较低,应变速率敏感性随着变形温度的升高而增加,但激活体积独立于变形温度。应变速率敏感性和激活体积的数值表明晶粒内部位错之间的交互作用几乎不发生,而位错与晶界之间的交互作用显著影响超细晶工业纯钛的塑性变形。  相似文献   

16.
We investigate the kinetics of the deformation structure evolution and its contribution to the strain hardening of a Fe–30.5Mn–2.1Al–1.2C (wt.%) steel during tensile deformation by means of transmission electron microscopy and electron channeling contrast imaging combined with electron backscatter diffraction. The alloy exhibits a superior combination of strength and ductility (ultimate tensile strength of 1.6 GPa and elongation to failure of 55%) due to the multiple-stage strain hardening. We explain this behavior in terms of dislocation substructure refinement and subsequent activation of deformation twinning. The early hardening stage is fully determined by the size of the dislocation substructure, namely, Taylor lattices, cell blocks and dislocation cells. The high carbon content in solid solution has a pronounced effect on the evolving dislocation substructure. We attribute this effect to the reduction of the dislocation cross-slip frequency by solute carbon. With increasing applied stress, the cross-slip frequency increases. This results in a gradual transition from planar (Taylor lattices) to wavy (cells, cell blocks) dislocation configurations. The size of such dislocation substructures scales inversely with the applied resolved stress. We do not observe the so-called microband-induced plasticity effect. In the present case, due to texture effects, microbanding is not favored during tensile deformation and, hence, has no effect on strain hardening.  相似文献   

17.
R. Schouwenaars 《Acta Materialia》2012,60(18):6331-6340
The two-parameter model for strain hardening has proven to be a powerful tool in explaining the main features of dislocation storage during plastic deformation. The well-established but empirical Taylor equation relates dislocation density to yield stress. The free path for dislocations relates strain to the increase in density and appears as an empirical constant. The goal of the present paper is to address the Taylor equation from a probabilistic framework; future work will explore the calculation of the free path length. The distribution of obstacles in the slip plane will be modelled as a plane Poisson process and the relationship between its Delaunay triangulation and dislocation storage will be established. The statistical properties of this triangulation allow determining the number of segments stored after dislocation bow-out as well as their length distribution. This naturally leads to the percolation limit for dislocation flow between impenetrable obstacles; together with a differential equation which describes the evolution of dislocation density as a function of stress, this provides a mathematical foundation for the Taylor equation in the case of forest hardening.  相似文献   

18.
In a recent article [J. Rajagopalan, J.H. Han, M.T.A. Saif, Science 315 (2007) 1831–1834], we have reported substantial (50–100%) plastic strain recovery in freestanding nanocrystalline metal films (grain size 50–65 nm) after unloading. The strain recovery was time dependent and thermally activated. Here we model the time evolution of this strain recovery in terms of a thermally activated dislocation propagation mechanism. The model predicts an activation volume of ≈42b3 for the strain recovery process in aluminum.  相似文献   

19.
谭洪锋 《物理测试》2010,28(6):12-12
 本文对Hollomon关系式所定义的应变硬化指数(n值)的力学本质,进行了不同拉伸控制模式下的解析,通过单向拉伸实验分析了不同拉伸速率对n值的影响。研究表明:1)应变硬化指数(n值)不是常数,而是与控制模式有关的变量;2)由于多晶体金属材料塑性变形过程的时间性特点,提高拉伸速率会降低n值;3)拉伸在均匀塑性变形阶段推荐使用应变速率控制模式;由于是静载荷拉伸试验,采用较低的拉伸速率使得拉伸各项特征值更接近真实值。  相似文献   

20.
利用带有加热装置和同步组装系统的Hopkinson压杆系统对反应堆工程管道材料0Cr18Ni10Ti焊接头的母材和焊缝进行了高温、高应变率下的动态力学性能测试.实验的应变率范围为20m-3800s^-1,温度范围为25—600℃,得到了材料在不同温度和应变率耦合作用下的应力-应变曲线.着重考察了两种材料塑性流变应力的温度和应变率敏感性,并得到了它们的Johson—Cook(J-C)模型.实验表明,母材和焊缝材料均具有较强的热软化效应及应变强化效应,而应变率强化效应相对较弱,并且这些效应本身也受到温度的影响.温度较高时,材料的塑性流变应力受应变和应变率强化的程度减弱,在一定变形量下甚至出现降低趋势.根据热激活位错运动理论对上述现象的内在机理进行了解释和探讨,并对试样的金相组织进行了观察和分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号