首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
鲍芳  于虹  黄庆安 《传感技术学报》2006,19(5):1713-1716
提出了用于分析硅纳米梁静态弯曲的半连续体模型.与传统的连续体模型相比,该方法考虑了厚度方向进入纳米尺度所带来的物理特性的离散化现象.基于Sun-Zhang提出的应变能量计算模型,运用变分原理,推导出半连续体模型.从计算结果可以看出,几何尺寸和表面原子的重构、弛豫效应对梁的弯曲有一定影响.该模型分析梁的弯曲得到的结果与连续体模型相比偏小,随着尺寸的增大误差逐渐减小,在宏观尺寸下两种模型最终趋于一致.  相似文献   

2.
纳米氧化物的制备及其应用于传感器的研究   总被引:1,自引:0,他引:1  
在纳米尺度下,物质中电子的波性以及原子之间的相互作用将受到尺度大小的影响.在这个尺度时,物质会出现表面效应、小尺寸效应、量子尺寸效应以及宏观量子隧道效应.利用纳米技术的上述效应可把传感器的性能提高到新水平,使其不仅体积小、速度快、精度高而且可靠性好.基于表面效应的纳米结构膜是当前传感器研究的热点,该课题组近年来一直致力于纳米氧化物的制备及其应用研究,特别是将纳米氧化物应用于传感技术的研究.主要的研究工作包括以下几个方面:  相似文献   

3.
当电子器件的尺寸小到纳米尺度时,将会进入电子器件发展的第三个时期即单电子晶体管时期。由于纳米尺度的单电子晶体管的尺寸仅为目前微米尺度的晶体管的千分之一左右,同时其工作能耗也将大幅度降低,这就为实现更大规模的集成度提供了可能。本文将在介绍近年来应用扫描隧道显微镜在单原子操纵这一纳米电子学前沿研究领域所取得的部分研究进展的基础上,讨论纳米电子技术的应用前景。  相似文献   

4.
针对卷积神经网络在图像超分辨率重建任务上忽视提取多尺度特征的问题,提出了一种多尺度融合网络结构。该模型从不同空间尺寸的特征图中提取高频和低频特征,并引入注意力机制,能够自适应地调整不同通道和空间区域的权重。同时,利用不同尺寸的卷积核捕捉多尺度特征,以更好地恢复图像高频细节。在多个基准数据集上进行实验,结果表明,该模型在峰值信噪比、结构相似性和视觉效果上均优于其他几种先进的图像超分辨率重建模型。  相似文献   

5.
空气热氧化用多元醇溶剂热方法得到的金属钌纳米颗粒,可以得到纳米氧化钌颗粒,将其与金属钌纳米粉体混合,使其具有适当的聚集特性,将混合粉体与硅橡胶复合,呈现具有良好的压阻重复性和压阻敏感性,测量不同尺寸电极间的压阻行为,表明此种导电硅橡胶在毫米尺寸以上呈现一定的标度不变性,表明材料在一定尺寸范围内满足微型化要求,适用于集成的压阻弹性体应力测量阵列,我们制备了测量面载荷分布的阵列电极,设计了用于动态触觉传感测量的电路和支持软件,结果表明,针对压阻材料电阻/载荷敏感特性,通过每个压阻单元微秒级的信号获取和数据处理,可以实现毫米尺度的静态或动态载荷三维成像,该传感阵列的可重复和定量特性使其基本满足实用的人体工学器件要求。  相似文献   

6.
为提高大尺寸工件机器视觉测量精度,提出一种基于坐标变换的图像拼接方法,并给出该坐标变换方法的解算模型及求解方法,分析了局部测量误差、重叠区域公共点个数等对坐标变换精度的影响,得到了最佳拼接条件,并通过实验对其进行了验证;实验结果表明,该方法简单易行、结果可靠,对存在平移、旋转以及尺度缩放的图像都具有良好的效果,能有效地解决采用机器视觉进行大尺寸工件精确测量时的坐标归一化问题。  相似文献   

7.
针对三维基于模型的定义(MBD)技术存在的结构复杂、尺寸标注易出错、人工检 查难度大等问题,提出了一种尺寸标注完备性检查及尺寸链分析技术。将空间标注尺寸转换成 一系列的矩阵结构,从三维层面上保证模型中尺寸标注的完备性,并在此基础上分析计算尺寸 链中各成员尺寸,验证设计尺寸的合理性。运用矩阵的数学形式表达、存储三维MBD 模型上 的标注尺寸,通过尺寸标注节点位置与数量关系判断尺寸冗余与缺失情况,并从模型上提取待 判定尺寸链进行分析与校核,保证产品制造信息(PMI)传递的准确性并输出检查报告。以某型号 船用柴油机的连杆为对象验证了该方法的可行性,极大降低了检查时间和设计错误率,提高了 工作人员的设计效率。  相似文献   

8.
微米尺寸驱动结构广泛应用于微机电系统(MEMS)和集成电路等微/纳米系统中。由于这些微米尺寸驱动结构的几何尺寸和其微结构尺寸均在微米至纳米范围,它们的弹性、塑性性能及其变形行为具有明显的尺度效应。简要概述了近年来国内外有关微米尺寸驱动结构的弹性性能和变形特性尺度效应的研究情况,介绍了高阶理论的发展和塑性应变理论与微极理论在尺度效应分析中的应用,并对MEMS今后需要重点研究的方向进行了展望。  相似文献   

9.
嵌入式大气数据传感系统的空气动力学模型基于钝头体推导,该模型是否适用于锥头体尚未得到证实;对一典型锥头体进行了空气动力学模型适用性验证,验证结果表明该空气动力学模型用于锥头体时动静压相对误差超过了2.5%;对此,提出了一种适用于锥头体的改进校准算法,并且进行了仿真验证;仿真结果表明动静压相对误差小于0.5%,改进的校准算法有效消除了模型误差。  相似文献   

10.
忆阻器具有独特的记忆功能和连续可变的电导状态,在人工智能与神经网络等研究领域具有巨大的应用优势.详细推导了忆阻器的电荷控制模型,将纳米忆阻器与具有智能信息处理能力的混沌神经网络相结合,提出了一种新型的基于忆阻器的连续学习混沌神经网络模型.利用忆阻器可直接实现网络中繁多的反馈与迭代,即完成外部输入对神经元及神经元之间相互作用的时空总和.提出的忆阻连续学习混沌神经网络可以实现对已知模式和未知模式的区分,并能对未知模式进行自动学习和记忆.给出的计算机仿真验证了方案的可行性.由于忆阻器具有纳米级尺寸和自动的记忆能力,该方案有望大大简化混沌神经网络结构.  相似文献   

11.
A simple procedure is presented for predicting the buckling loads associated with general instability of large repetitive beamlike trusses. The procedure is based on replacing the original lattice structure by an equivalent continuum beam model and obtaining analytic solutions for the beam model. The continuum beam model accounts for warping and shear deformation in the plane of the cross section and is characterized by its strain energy and potential energy due to initial stresses from which the governing differential equations are derived. The high accuracy of the buckling predictions of the proposed continuum beam is demonstrated by means of numerical examples.  相似文献   

12.
提出了V型电热硅微致动器的弯曲振动力学模型。考虑到微米尺度上的硅梁难以简化为质量块、弹簧振动模型,采用了连续体建模,据此可进行其模态分析及动态频率特性的理论研究。利用自行设计制造的在线动态测试机构,测试了V型电热硅微致器在不同激励电压驱动下的响应输出,结果表明其位移输出也是随交变驱动电压的变化而非同步地发生变化。  相似文献   

13.
A small-signal model that describes the energy exchange between surface micromachined beams and bulk-lead zirconium titanate (PZT) actuators attached to the silicon substrate is presented. The model includes detection of acoustic waves launched from electrostatically actuated structures on the surface of the die, as well as their actuation by bulk waves generated by piezoelectric ceramics. The interaction is modeled via an empirical equivalent circuit, which is substantiated by experiments designed to extract the model parameters. The equivalent model is valid for cases where the beam resonance frequency is much smaller than the thickness mode resonance of the PZT/silicon stack. In this paper, the resonance frequency of the beams ranges between 200 and 300 kHz. As energy transfer between bulk-PZT and electrostatic actuated beam resonators must be reciprocal for small signals, this paper uses the extracted equivalent model to describe the physical sources of error that account for discrepancies in reciprocity.$hfill$[2008-0131]   相似文献   

14.

Energy harvesting has experienced significant attention from researchers globally. This is due to the quest to power remote sensors and portable devices with power requirements of tens to hundreds of μW. Hence, ambient vibration energy has the potential to provide such power demands. Thus, cantilever beams with piezoelectric materials have been utilized to transduce mechanical energy in vibrating bodies to electrical energy. However, the challenge is to develop energy harvesters that can harvest sufficient amount of energy needed to power wireless sensor nodes at wide frequency bandwidth. In this article, piezoelectric energy harvester (PEH) beams with coupled magnets are proposed to address this issue. With macro fiber composite as the piezoelectric transducer, mathematical models of different system configurations having magnetic couplings are derived based on the continuum based model. Simulations of the system dynamics are done using numerical integration technique in MATLAB software to study the influence of magnetic interactions in generating power and frequency bandwidth due to base excitations at low frequency range. Experimental results comparing conventional system and the proposed piezoelectric beam configurations with coupled magnets are also presented. Finally, the optimal beam separation distance between the magnetic oscillator and PEH is presented in this work.

  相似文献   

15.
The scattering dynamics of water molecules on solid surfaces was investigated using the molecular beam technique. In contrast to the experiments previously reported in the literature, the range of incident energy was chosen to cover the typical kinetic energies of gas molecules in equilibrium at room temperature (35–130 meV). Even in such a narrow energy range, the angular distribution of scattered molecules is heavily affected by the incident energy, exhibiting both a nearly cosine distribution and a lobular distribution, which has a clear peak close to the specular direction. Interestingly, the tangential momentum accommodation coefficients (TMACs) estimated from the scattering experiments show opposite energy dependences on graphite (0001) and silicon (100) surfaces. As the incident energy increases, the TMAC decreases on the graphite surface, whereas it increases on the silicon surface. These trends can be attributed to the relatively large adsorption energy of water molecules on these surfaces and the atomic-scale surface corrugation, although a rigorous understanding requires further analysis by molecular dynamics simulations. Our findings suggest the need for an elaborate slip-flow model that takes account of the incident energy effect to accurately analyze water vapor flow in micro/nanostructures, which is ubiquitous in nature and engineering applications.  相似文献   

16.
This study applies energy method to derive the system modeling of a triaxial microaccelerometer that consists of a quadri-beam suspension, a seismic mass, and displacement transducers using piezoelectric thin films. Two suspension beams support both ends of the seismic mass, which is fabricated by anisotropic etching of silicon. An out-of-plane acceleration will result in a symmetric bend, and in-plane accelerations will produce asymmetric bend and torsion of the suspension beams. Two piezoelectric thin-film transducers are arranged at both ends of each suspension beam. Eight transducers in total are interconnected such that triaxial accelerations can be measured selectively. The structure stiffness of the suspension beams considers both the silicon beams and piezoelectric films by the use of the laminated beam theory. Therefore, the analytical model is applicable to the accelerometers with thick piezoelectric films. The model is based on the anisotropic material properties of Silicon and PZT and Euler’s beam equation with the assumptions that smaller strains and stresses are negligible. The analytical results of the resonant frequencies and sensor sensitivities to triaxial accelerations are presented and confirmed by finite element analysis.  相似文献   

17.
This study designs and characterizes a novel MEMS-based flow-rate micro-sensor consisting of a platinum resistor deposited on a silicon nitride-coated silicon cantilever beam. Due to the difference between the thermal conductivities of the silicon nitride film and the silicon beam, the tip of the cantilever structure bends slightly in the upward direction. As air travels across the upper surface of the sensor, it interferes with the curved tip and displaces the beam in either the upward or the downward direction. The resulting change in the resistor signal is then used to calculate the velocity of the air. A flow-direction micro-sensor is constructed by arranging eight cantilever structures on an octagonal platform. Each cantilever is separated from its neighbors by a tapered baffle plate connected to a central octagonal pillar designed to attenuate the aerodynamic force acting on the cantilever beams. By measuring the resistor signals of each of the cantilever beams, the micro-sensor is capable of measuring both the flow rate and the flow direction of the air passing over the sensor. A numerical investigation is performed to examine the effects of the pillar height and pillar-to-tip gap on the airflow distribution, the pressure distribution, the bending moment acting on each beam, and the sensor sensitivity. The results show that the optimum sensor performance is obtained using a pillar height of 0.75 mm and a pillar-to-tip gap of 5 mm. Moreover, the sensitivity of the octagonal sensing platform is found to be approximately 90% that of a single cantilever beam.  相似文献   

18.
Xie  Banghua  Sahmani  Saeid  Safaei  Babak  Xu  Bin 《Engineering with Computers》2021,37(2):1611-1634

To impart desirable material properties, functionally graded (FG) porous silicon has been produced in which the porosity changes gradually across the material volume. The prime objective of this work is to predict the influence of the surface free energy on the nonlinear secondary resonance of FG porous silicon nanobeams under external hard excitations. On the basis of the closed-cell Gaussian-random field scheme, the mechanical properties of the FG porous material are achieved corresponding to the uniform and three different FG patterns of porosity dispersion. The Gurtin–Murdoch theory of elasticity is implemented into the classical beam theory to construct a surface elastic beam model. Thereafter, with the aid of the method of multiple time-scales together with the Galerkin technique, the size-dependent nonlinear differential equations of motion are solved corresponding to various immovable boundary conditions and porosity dispersion patterns. The frequency response and amplitude response associated with the both subharmonic and superharmonic hard excitations are obtained including multiple vibration modes and interactions between them. It is found that for the subharmonic excitation, the nanobeam is excited within a specific range of the excitation amplitude, and this range shifts to higher excitation amplitude by incorporating the surface free energy effects. For the superharmonic excitation, by taking surface stress effect into account, the excitation amplitude associated with the peak of the vibration amplitude enhances. Moreover, in the subharmonic case, it is demonstrated that by increasing the porosity coefficient, the value of the excitation frequency at the joint point of the two branches of the frequency-response curve reduces. In the superharmonic case, it is revealed that an increment in the value of porosity coefficient leads to decrease the peak of the oscillation amplitude and the associated excitation frequency.

  相似文献   

19.
In this study, the effect of the centrifugal forces on the eigenvalue solution obtained using two different nonlinear finite element formulations is examined. Both formulations can correctly describe arbitrary rigid body displacements and can be used in the large deformation analysis. The first formulation is based on the geometrically exact beam theory, which assumes that the cross section does not deform in its own plane and remains plane after deformation. The second formulation, the absolute nodal coordinate formulation (ANCF), relaxes this assumption and introduces modes that couple the deformation of the cross section and the axial and bending deformations. In the absolute nodal coordinate formulation, four different models are developed; a beam model based on a general continuum mechanics approach, a beam model based on an elastic line approach, a beam model based on an elastic line approach combined with the Hellinger–Reissner principle, and a plate model based on a general continuum mechanics approach. The use of the general continuum mechanics approach leads to a model that includes the ANCF coupled deformation modes. Because of these modes, the continuum mechanics model differs from the models based on the elastic line approach. In both the geometrically exact beam and the absolute nodal coordinate formulations, the centrifugal forces are formulated in terms of the element nodal coordinates. The effect of the centrifugal forces on the flap and lag modes of the rotating beam is examined, and the results obtained using the two formulations are compared for different values of the beam angular velocity. The numerical comparative study presented in this investigation shows that when the effect of some ANCF coupled deformation modes is neglected, the eigenvalue solutions obtained using the geometrically exact beam and the absolute nodal coordinate formulations are in a good agreement. The results also show that as the effect of the centrifugal forces, which tend to increase the beam stiffness, increases, the effect of the ANCF coupled deformation modes on the computed eigenvalues becomes less significant. It is shown in this paper that when the effect of the Poisson ration is neglected, the eigenvalue solution obtained using the absolute nodal coordinate formulation based on a general continuum mechanics approach is in a good agreement with the solution obtained using the geometrically exact beam model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号