首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Copolymerization of vinyl chloride (VC) and ethylene with Cp*Ti( OCH3)3/MAO catalyst was investigated. The Cp*Ti( OCH3)3/MAO catalyst initiated the copolymerization of VC with ethylene, although the copolymer yields were low. In the 13C NMR spectra of the copolymers, the peaks based on junction part between VC and ethylene was observed, but the signals were small. From DSC measurement of the copolymers, only one glass transition temperature was observed. Thus, it is clear that the copolymerization with Cp*Ti( OCH3)3/MAO catalysts gave the copolymer, and the copolymer consisting of block sequence rather than random copolymer. Received: 13 November 2002/Revised: 6 January 2003/Accepted: 10 January 2003 Correspondence to Kiyoshi Endo  相似文献   

2.
To enhance the absorption rate for CO2 and SO2, aqueous ammonia (NH3) solution was added to an aqueous 2-amino-2-methyl-1-propanol (AMP) solution. The simultaneous absorption rates of AMP and a blend of AMP+ NH3 for CO2 and SO2 were measured by using a stirred-cell reactor at 303 K. The process operating parameters of interest in this study were the solvent and concentration, and the partial pressures of CO2 and SO2. As a result, the addition of NH3 solution into aqueous AMP solution increased the reaction rate constants of CO2 and SO2 by 144 and 109%, respectively, compared to that of AMP solution alone. The simultaneous absorption rate of CO2/SO2 on the addition of 1 wt% NH3 into 10 wt% AMP at a p A1 of 15 kPa and p A2 of 1 kPa was 5.50×10−6 kmol m−2 s−1, with an increase of 15.5% compared to 10 wt% AMP alone. Consequently, the addition of NH3 solution into an aqueous AMP solution would be expected to be an excellent absorbent for the simultaneous removal of CO2/SO2 from the composition of flue gas emitted from thermoelectric power plants.  相似文献   

3.
Simultaneous removal of ternary gases of NH3, H2S and toluene in a contaminated air stream was investigated over 185 days in a biofilter packed with cork as microbial support. Multi-microorganisms including Nitrosomonas and Nitrobactor for nitrogen removal, Thiobacillus thioparus (ATCC 23645) for H2S removal and Pseudomonas aeruginosa (ATCC 15692), Pseudomonas putida (ATCC 17484) and Pseudomonas putida (ATCC 23973) for toluene removal were used simultaneously. The empty bed residence time (EBRT) was 40–120 seconds and the inlet feed concentration was 50-180 ppmv for NH3, 30–160 ppmv for H2S and 40–130 ppmv for toluene, respectively. The observed removal efficiency was 45–100% for NH3, 96–100% for H2S, and 10–99% for toluene, respectively. Maximum elimination capacity was 5.5 g/m3/hr for NH3, >20.4 g/m3/hr for H2S and 4.5 g/m3/hr for toluene, respectively. During long-term operation, the removal efficiency of toluene gradually decreased, mainly due to depositions of elemental sulfur and ammonium sulfate on the cork surface. The results of microbial analysis showed that nearly the same population density was observed on the surfaces of cork chips collected at each sampling point. Kinetic model analyses showed that there were no particular evidences of interactions or inhibitions among the microorganisms.  相似文献   

4.
The generation of active chlorine on Ti/Sn(1−x)Ir x O2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L−1) and a low current density (5 mA cm−2) it was possible to produce up to 60 mg L−1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1−x)Ir x O2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm−2 and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 × 10−4 mol L−1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.  相似文献   

5.
The polytherms of ice melting in sections of the Ca(NO3)2-Mg(NO3)2-CO(NH2)2-H2O system with different component ratios were studied in the temperature interval from 0 to −40°C. A series of nitrate and nitrate-carbonate reagents that are promising for the creation of anti-acing reagents were found, which form eutectics with ice at temperatures from −25 to −39°C. Their properties, viz., melting properties with respect to ice and corrosiveness on metals and alloys, were determined. An effective corrosion inhibitor was selected.  相似文献   

6.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

7.
Although aqueous ammonia solution has been focused on the removal of CO2 from flue gas, there have been very few reports regarding the underlying analysis of the reaction between CO2 and NH3. In this work, we explored the reaction of CO2-NH3-H2O system at various operating temperatures: 40 °C, 20 °C, and 5 °C. The CO2 removal efficiency and the loss of ammonia were influenced by the operating temperatures. Also, infrared spectroscopy measurement was used in order to understand the formation mechanism of ion species in absorbent, such as NH2COO, HCO3, CO32−, and NH4+, during CO2, NH3, and H2O reaction. The reactions of CO2-NH3-H2O system at 20 °C and 40 °C have similar reaction routes. However, a different reaction route was observed at 5 °C compared to the other operating temperatures, showing the solid products of ammonium bicarbonates, relatively. The CO2 removal efficiency and the formation of carbamate and bicarbonate were strongly influenced by the operating temperatures. In particular, the analysis of the formation carbamate and bicarbonate by infrared spectroscopy measurement provides useful information on the reaction mechanism of CO2 in an aqueous ammonia solution.  相似文献   

8.
The cationic polymerization of cyclopentadiene (CPD) with 1-(4-methoxyphenyl)ethanol (1)/BF3OEt2 initiating system in CH2Cl2:CH3CN 4:1 (v/v) mixture at room temperature and in the presence of water ([H2O]/[BF3OEt2] up to 8) is reported. The number-average molecular weights of obtained polymers increased in direct proportion to monomer conversion or initial monomer concentration (M n ≤ 4,000 g mol−1) in agreement with calculated values, and were inversely proportional to initiator concentration. Polymer MWDs were relatively narrow (M w/M n = 1.4–1.7) up to 60% of monomer conversion. It was also shown that regioselectivity of CPD polymerization with 1/BF3OEt2 initiating system did not depend significantly on water, monomer, or initiator concentration (1,4-structures content was nearly 60% in all cases).  相似文献   

9.
High quality crednerite CuMnO2 was prepared by solid state reaction at 950 °C under argon flow. The oxide crystallizes in a monoclinically distorted delafossite structure associated to the static Jahn–Teller (J–T) effect of Mn3+ ion. Thermal analysis showed that it converts reversibly to spinel Cu x Mn3−x O4 at ~420 °C in air and further heating reform the crednerite above 940 °C. CuMnO2 is p-type, narrow semiconductor band gap with a direct optical gap of 1.31 eV. It exhibits a long-term chemical stability in basic medium (KOH 0.5 M), the semi logarithmic plot gave an exchange current density of 0.2 μA cm−2 and a corrosion potential of ~−0.1 VSCE. The electrochemical oxygen insertion/desinsertion is evidenced from the intensity–potential characteristics. The flat band potential (V fb = −0.26 VSCE) and the holes density (N A  = 5.12 × 1018 cm−3) were determined, respectively, by extrapolating the curve C 2 versus the potential to the intersection with C 2  = 0 and from the slope of the Mott–Schottky plot. From photoelectrochemical measurements, the valence band formed from Cu-3d wave function is positioned at 5.24 ± 0.02 eV below vacuum. The Nyquist representation shows straight line in the high frequency range with an angle of 65° ascribed to Warburg impedance originating from oxygen intercalation and compatible with a system under mass transfer control. The electrochemical junction is modeled by an equivalent electrical circuit thanks to the Randles model.  相似文献   

10.
In the Triton X-100/n-CnH2n+1COOH/H2O system, n-CnH2n+1COOH can be used as a cosurfactant. As its chain length increases, the regions of the microemulsions showing oil-in-water (O/W), water-in-oil (W/O), and bicontinuous structures decrease and at the same time, the region of the lamellar liquid crystal increases. In the O/W region, the distribution coefficient K of n-CnH2n+1COOH between Triton X-100 micellar phase and water phase increases with the chain length of saturated unbranched monocarboxylic acid. The relationship between the standard solubilization Gibbs free energy of saturated unbranched monocarboxylic acid and the number of methylene groups in the saturated unbranched monocarboxylic acid is given by the equation: ΔG m 0=−2.364−2.818 n(CH2) kJ·mol−1 in the Triton X-100 micellar system. In the lamellar liquid crystal region, small-angle X-ray diffraction shows that the thickness of the bilayer d 0 is independent of the weight ratio of n-CnH2n+1COOH to Triton X-100, but the volume of the solvent penetrating from the solvent layer to the amphiphilic bilayer increases with the weight ratio of n-CnH2n+1COOH to Triton X-100. Furthermore, the d 0 value increases with the chain length of saturated unbranched monocarboxylic acid, which will contribute to the formation and stabilization of the lamellar liquid crystal.  相似文献   

11.
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d 33], electromechanical coupling coefficient [k p], and remnant polarization [P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.  相似文献   

12.
A series of nano-granular films composed of magnetic metal (Fe65Co35) granules with a few nanometers in size and semiconductor oxide (ZnO) have been fabricated by a magnetron sputtering method, and excellent soft magnetic properties have been achieved in a wide metal volume fraction (x) range for as-deposited samples due to the exchange coupling between FeCo granules (a ferromagnetic interaction in nano-scale). In a wide range (0.53 < x < 0.71), the films exhibit coercivity H C not exceeding 15 Oe, along with high resistivity. Especially for the sample with x = 0.67, coercivities in hard and easy axes are 1.43 and 7.08 Oe, respectively, 4πM S  = 9.85 kg, and ρ reaches 2.06 × 103 μΩ cm. The dependence of complex permeability μ = μ′ − ″ on frequency shows that the real part μ′ is more than 100 below 1.83 GHz and that the ferromagnetic resonance frequency reaches 2.31 GHz, implying the promising for high frequency application. The measured negative temperature coefficient of resistivity reveals that may be the weak localized electrons existing in samples mediate the exchange coupling.  相似文献   

13.
Zeolite Mazzite (MAZ) analogue was synthesized directly using piperazine as a structure directing agent. The reactive gel composition used was (5.0–7.0) piperazine:(6.0–7.0) Na2O:Al2O3:20.0SiO2:400H2O. Using this composition, the reaction time was shortened greatly to 4 days and the crystallization time was reduced as well. The DTA data showed that piperazine, in as-synthesized zeolite omega decomposed easily. The decomposition of the piperazine occurred at 400–480°C. NH3-TPD analysis proved that zeolite H-omega from piperazine had strong surface acidity with ammonia desorption temperature up to 590°C.  相似文献   

14.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

15.
A detailed analysis of potential versus time measurements at galvanostatic charge/discharge conditions (external current change from −1 to +1 mA cm−2) for two La–Ni alloys in Ar-saturated 0.1 M KOH solution is presented. It is shown that passivation of the electrodes does not affect the potential jump as a result of current switching over. The value of potential jump allows to calculate the exchange current density for H2O/H2 system on the tested material. Anodic potential of the hydrogenated electrode (at i a = const) linearly increases with logarithm of time which allows to evaluate precisely time necessary for oxidation of hydrogen absorbed during cathodic charging. The method described enables to determine effectiveness of hydrogen absorption by materials applied for negative electrodes of NiMH batteries.  相似文献   

16.
The electrochemical oxidation of olive mill wastewater (OMW) over a Ti/RuO2 anode was studied by means of cyclic voltammetry and bulk electrolysis and compared with previous results over a Ti/IrO2 anode. Experiments were conducted at 300–1,220 mg L−1 initial chemical oxygen demand (COD) concentrations, 0.05–1.35 V versus SHE and 1.39–1.48 V versus SHE potential windows, 15–50 mA cm−2 current densities, 0–20 mM NaCl, Na2SO4, or FeCl3 concentrations, 80 °C temperature, and acidic conditions. Partial and total oxidation reactions occur with the overall rate being near first-order kinetics with respect to COD. Oxidation at 28 Ah L−1 and 50 mA cm−2 leads to quite high color and phenols removal (86 and 84%, respectively), elimination of ecotoxicity, and a satisfactory COD and total organic carbon reduction (52 and 38%, respectively). Similar performance can be achieved at the same charge (28 Ah L−1) using lower current densities (15 mA cm−2) but in the presence of various salts. For example, COD removal is less than 7% at 28 Ah L−1 in a salt-free sample, while addition of 20 mM NaCl results in 54% COD reduction. Decolorization of OMW using Ti/RuO2 anode seems to be independent of the presence of salts in contrast with Ti/IrO2 where addition of NaCl has a beneficial effect on decolorization.  相似文献   

17.
This study investigated the removal of ammonia in wastewater by an electrochemical method using titanium electrodes coated with ruthenium and iridium (RuO2–IrO2–TiO2/Ti) with low chlorine evolution over-voltage. The effects of operating parameters, including chloride ion concentration, current density and initial pH, were also investigated. The results were evaluated primarily by considering the efficiency of the elimination of NH4+-N. The removal of ammonia by electrochemical oxidation mainly resulted from the indirect oxidation effect of chlorine/hypochlorite produced during electrolysis. The direct anodic oxidation efficiency of ammonia was less than 5%, and the current efficiency was less than 10%. The ammonia removal followed pseudo-first-order kinetics. The electrochemical process can be applied successfully as a final polishing step, or as an alternative method to biological nitrification. The process seems to be most beneficial for small coastal cities  相似文献   

18.
The inhibiting effect of two organic copolymers namely poly(vinyl caprolactone-co-vinyl pyridine) (PVCVP) and poly(vinyl imidazol-co-vinyl pyridine) (PVIVP) on the corrosion of steel in phosphoric acid was investigated at various temperatures. The study was carried out by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. Inhibition efficiency (E %) increased with polymer concentration to attain 85% at 10−4 M for PVIVP. Adsorption of polymers on the steel surface in 2 M H3PO4 followed the Langmuir isotherm model. EIS measurements show that the dissolution of steel occurs under activation control. Polarisation curves indicate that the tested polymers functioned as cathodic inhibitors. E % values obtained from various methods used are in good agreement with each other. The temperature effect on the corrosion behaviour of steel in 2 M H3PO4 in the presence and absence of the inhibitor was studied in the temperature range 298–338 K. The adsorption free energy (ΔG o ads) and the activation parameters (E a, , ΔS o a) for the steel dissolution reaction in the presence of polymer were determined.  相似文献   

19.
Two mesoporous material Ni/γ-Al2O3 catalysts were prepared and characterized by ICP-AES, XRD, and TPR. The differences in reaction activity between Ni-in-Al2O3 and Ni-on-Al2O3 were investigated for hydrotreating of crude 2-ethylhexanol. The results show that the Ni species (Ni-on-Al2O3) exhibit excellent hydrogenation activities at a wide range of H2 pressure and space velocity, while the Ni species (Ni-in-Al2O3) exhibit similar activities with those of Ni-on-Al2O3 only at higher H2 pressure and lower space velocity. Due to the presence of extensively exposed Ni species on the Ni-on-Al2O3 catalyst, its hydrogenation performance was increased significantly because of the low interphase mass transfer resistance.  相似文献   

20.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号