首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
A previous experimental study (He et al., 1997) found 132 duration-selective neurons with long latencies of greater than 30 ms in the dorsal zone of cat auditory cortex. The mechanism by which such long-latency neurons integrate information during their latent period is investigated by analysis of the temporal relationship between the stimulus and neuronal response. In the present study, we developed a one-layer perceptron to examine the above temporal relationship of the experimental results. The acoustic stimulus was represented as a contiguous series of sequential short time epochs. The perceptron was trained by using the spike data as the desired outputs and the acoustic stimuli (in digital format) as the inputs. The adaptive weights between the outputs and the inputs after training indicated the temporal relationship between neuronal responses and the stimuli. The contribution of each time epoch of the stimulus could be either positive or negative: the positive contribution corresponds to excitatory input and the negative contribution to inhibitory input. Long-duration-selective neurons were found to receive mainly excitatory input along the entire effective stimulus duration. However, duration-tuned neurons received excitatory input for only the time period from the stimulus onset to their best durations, and inhibitory thereafter. The temporal integration pattern of short-duration-selective neurons was similar to duration-tuned neurons. However, short-duration-selective neurons received excitatory input only at the beginning of the stimulus. Each of the duration-threshold neurons integrated auditory information only for a restricted time period of the stimulus, suggesting that they have a time window over the stimulus time domain. Non-duration-threshold neurons have time windows extending from the stimulus onset onward. The assembly of duration-threshold neurons and non-duration-threshold neurons may collectively represent the time axis of the stimulus.  相似文献   

2.
Studies of olfaction have focused mainly on neural processing of information about the chemistry of odors, but olfactory stimuli have other properties that also affect central responses and thus influence behavior. In moths, continuous and intermittent stimulation with the same odor evokes two distinct flight behaviors, but the neural basis of this differential response is unknown. Here we show that certain projection neurons (PNs) in the primary olfactory center in the brain give context-dependent responses to a specific odor blend, and these responses are shaped in several ways by a bicuculline-sensitive GABA receptor. Pharmacological dissection of PN responses reveals that bicuculline blocks GABAA-type receptors/chloride channels in PNs, and that these receptors play a critical role in shaping the responses of these glomerular output neurons. The firing patterns of PNs are not odor-specific but are strongly modulated by the temporal pattern of the odor stimulus. Brief repetitive odor pulses evoke fast inhibitory potentials, followed by discrete bursts of action potentials that are phase-locked to the pulses. In contrast, the response to a single prolonged stimulus with the same odor is a series of slow oscillations underlying irregular firing. Bicuculline disrupts the timing of both types of responses, suggesting that GABAA-like receptors underlie both coding mechanisms. These results suggest that glomerular output neurons could use more than one coding scheme to represent a single olfactory stimulus. Moreover, these context-dependent odor responses encode information about both the chemical composition and the temporal pattern of the odor signal. Together with behavioral evidence, these findings suggest that context-dependent odor responses evoke different perceptions in the brain that provide the animal with important information about the spatiotemporal variations that occur in natural odor plumes.  相似文献   

3.
The ultra-potent opioid analgesic, etorphine, elicits naloxone-reversible, dose-dependent inhibitory effects, i.e., shortening of the action potential duration (APD) of naive and chronic morphine-treated sensory dorsal root ganglion (DRG) neurons, even at low (pM-nM) concentrations. In contrast, morphine and most other opioid agonists elicit excitatory effects, i.e., APD prolongation, at these low opioid concentrations, require much higher (ca. 0.1-1 microM) concentrations to shorten the APD of naive neurons, and evoke only excitatory effects on chronic morphine-treated cells even at high > 1-10 microM concentrations. In addition to the potent agonist action of etorphine at mu-, delta- and kappa-inhibitory opioid receptors in vivo and on DRG neurons in culture, this opioid has also been shown to be a potent antagonist of excitatory mu-, delta- and kappa-receptor functions in naive and chronic morphine-treated DRG neurons. The present study demonstrates that the potent inhibitory APD-shortening effects of etorphine still occur in DRG neurons tested in the presence of a mixture of selective antagonists that blocks all mu-, delta- and kappa-opioid receptor-mediated functions, whereas addition of the epsilon (epsilon)-opioid-receptor antagonist, beta-endorphin(1-27) prevents these effects of etorphine. Furthermore, after markedly enhancing excitatory opioid receptor functions in DRG neurons by treatment with GM1 ganglioside or pertussis toxin, etorphine shows excitatory agonist action on non-mu-/delta-/kappa-opioid receptor functions in these sensory neurons, in contrast to its usual potent antagonist action on mu-, delta- and kappa-excitatory receptor functions in naive and even in chronic morphine-treated cells which become supersensitive to the excitatory effects of mu-, delta- and kappa-opioid agonists. This weak excitatory agonist action of etorphine on non-mu-/delta-/kappa-opioid receptor functions may account for the tolerance and dependence observed after chronic treatment with extremely high doses of etorphine in vivo.  相似文献   

4.
Although it plays a major inhibitory role in the adult mammalian CNS, gamma-aminobutyric acid (GABA) may have an excitatory function in developing neurons. The present study focuses on the dependence of glutamate on GABA to generate action potentials in developing hypothalamic neurons. Under conditions where glutamate by itself could not evoke an action potential, GABA facilitated glutamate-mediated depolarization to fire action potentials. This facilitation had a broad time window during the decaying phase of the GABA-mediated depolarization in developing neurons in culture. The glutamate-mediated depolarization was shunted only during the peak of GABA-mediated depolarization, but was facilitated after that. Similar results were obtained in the presence of 2-amino-5-phosphonopentanoic acid (AP5), indicating that GABA can facilitate glutamate responses independent of relief of the Mg2+ block of the N-methyl-D-aspartate (NMDA) receptor. This novel interaction between GABA- and glutamate-mediated excitation could play a role in strengthening neuronal circuits during early development and would exert a maximal effect if GABA and glutamate receptors were activated after a slight temporal delay.  相似文献   

5.
Septal cholinergic neurons are known to play an important role in cognitive processes including learning and memory through afferent innervation of the hippocampal formation and cerebral cortex. The septum contains not only cholinergic neurons but also various types of neurons including GABA (gamma-aminobutyric acid)-ergic neurons. Although synaptic transmission in the septum is mediated primarily by the activation of excitatory and inhibitory amino-acid receptors, it is possible that a distinct phenotype of neuron is endowed with a different type for each of the amino-acid receptors and thus they play different roles from each other, since it has been demonstrated within the septum that there is a regional distribution of various types of amino-acid receptor subunits, their expression as different combinations within a specific cell may produce receptor channels with disparate functional properties. As a first step towards knowing the various functions of septal cholinergic neurons, we characterized the functional properties of glutamate, GABA (type A; GABAA) and glycine receptor channels on cultured rat septal neurons which were histologically identified to be cholinergic. These were similar to those of receptor channels on other types of neurons, except for the actions of some neuromodulators. The septal N-methyl-D-aspartate receptor channel was distinct in being less sensitive to Mg2+ and in a voltage-dependent action of Zn2+. The septal GABAA receptor channel exhibited a lanthanide site whose activation resulted in a positive allosteric interaction with a binding site of pentobarbital. The septal glycine receptor channel was only positively modulated by Zn2+; this action of Zn2+ was not accompanied by an inhibitory effect. Our data suggest that the amino-acid receptors on septal cholinergic neurons may play a distinct role compared to other types of neurons; this difference depends on the actions of neuromodulators and metal cations. It would be interesting to compare these effects recorded in tissue culture to those observed with septal cholinergic neurons in slice preparations.  相似文献   

6.
1 The effects of general anaesthetics on the responses of neurones to iontophoretically applied L-glutamate have been examined in slices of the guinea-pig olfactory cortex in vitro. 2 Concentrations of pentobarbitone, ether, methoxyflurance, trichloroethylene and alphaxalone that are known to depress synaptic transmission in the prepiriform cortex also depressed the sensitivity of prepiriform neurones to L-glutamate. 3 Halothane, in concentrations that depress synaptic transmission (less than 1%) did not alter sensitivity of neurones to glutamate. Higher concentrations (greater than 1% produced a dose-related depression of the glutamate sensitivity of neurones. 4 All four volatile anaesthetics tested caused some cells to alter their glutamate-evoked firing pattern to one in which the spike discharges were more closely grouped. Pentobarbitone and alphaxalone had no such effect. 5 If the sensitivity of the neurones to the endogenous excitatory transmitter is affected by anaesthetics in the same way as the glutamate-sensitivity, these results suggest that halothane depresses synaptic transmission by decreasing the amount of transmitter released from the nerve terminals, whereas the other anaesthetics depress the sensitivity of the post-synaptic membrane to the released transmitter.  相似文献   

7.
The effects of nitrous oxide (75%) on the spinal dorsal born wide dynamic range (WDR) neuronal activity were studied in either spinal cord intact or spinal cord-transected cats. Extracellular activity was recorded in the dorsal horn from single WDR neurons responding to noxious and non-noxious stimuli applied to the cutaneous receptive fields on the left bind foot pads of intact or decerebrate, spinal cord-transected (L 1-2) cats. The experiment was divided into four sections as follows: (1) When 10 micrograms of bradykinin (BK) was injected into the femoral artery ipsilateral to the recording site as the noxious test stimulus in the spinal cord-transected cat, all of 6 WDR neurons gave excitatory responses which were not depressed by 75% nitrous oxide. (2) When the injection of 10 micrograms of BK into the femoral artery ipsilateral to the recording site was used in the spinal cord-intact cat, 6 of 15 WDR neurons (40%) gave excitatory responses, which were significantly depressed by 75% nitrous oxide, and 9 of 15 WDR neurons (60%) gave inhibitory responses, which were not affected by 75% nitrous oxide. (3) When 10 micrograms of bradykinin (BK) was injected into the femoral artery contralateral to the recording site as the noxious test stimulus in the spinal cord transected cat, 6 of 12 WDR neurons gave excitatory reasons, which were not depressed by 75% nitrous oxide. (4) When the injection of 10 micrograms of BK into the femoral artery contralateral to the recording site was used in the spinal cord-intact cat, 6 of 6 WDR neurons (100%) gave responses, which were affected by 75% nitrous oxide. We have observed that nitrous oxide reduces the excitation and inhibition of dorsal born WDR neuronal activities induced by BK injection in spinal cord-intact cats, but does not reduce the excitation of those in spinal cord-transected cats. This finding confirmed that the antinociceptive effect of nitrous oxide might be modulated by supraspinal descending inhibitory control systems. In addition our result showed that the supraspinal effect of nitrous oxide was mediated not only by an increase but also a decrease in a supraspinal descending inhibition.  相似文献   

8.
Volatile anaesthetics have historically been considered to act in a nonspecific manner on the central nervous system. More recent studies, however, have revealed that the receptors for inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are sensitive to clinically relevant concentrations of inhaled anaesthetics. The function of GABA(A) and glycine receptors is enhanced by a number of anaesthetics and alcohols, whereas activity of the related GABA rho1 receptor is reduced. We have used this difference in pharmacology to investigate the molecular basis for modulation of these receptors by anaesthetics and alcohols. By using chimaeric receptor constructs, we have identified a region of 45 amino-acid residues that is both necessary and sufficient for the enhancement of receptor function. Within this region, two specific amino-acid residues in transmembrane domains 2 and 3 are critical for allosteric modulation of both GABA(A) and glycine receptors by alcohols and two volatile anaesthetics. These observations support the idea that anaesthetics exert a specific effect on these ion-channel proteins, and allow for the future testing of specific hypotheses of the action of anaesthetics.  相似文献   

9.
Extracellular single-unit discharges were obtained from 165 spontaneously active neurons within the region of the rostral ventrolateral medulla (RVLM) by glass microelectrode from 89 brain slices of the Sprague-Dawley rats. The units could be divided into three types: regular (61.8%), irregular (24.2%) and silent (14%). Acetylcholine (ACh, 0.1, 0.3 mumol/L) showed four kinds of effects on spontaneous discharges of RVLM neurons: excitatory, inhibitory, biphasic and non-responsive, counting respectively 41.8%, 20%, 3% and 35.2% of the neurons tested. The excitatory effect of ACh was dose-dependent. The effects, either excitatory or inhibitory, of ACh (n = 49) were mostly blocked by atropine (0.3 mumol/L, n = 42). The excitatory effect of ACh (n = 14) could be blocked mainly by selective antagonist of M1 receptor, pirenzepine (PZ, 30 nmol/L, n = 9), but not by selective antagonist of M2 receptor, methoctramine (MT) and AFDX-116. The inhibitory effect of ACh (n = 10) could be blocked mostly by M2 receptor antagonist MT (30 nmol/L, n = 7); and this inhibitory effect (n = 9) could be blocked mostly by another M2 receptor antagonist AFDX-116 (30 nmol/L, n = 6), but not by M1 receptor antagonist PZ.  相似文献   

10.
Moths pheromones mostly consist of two or a few chemical components in a species-specific ratio. Each component is perceived by a particular type of receptor cell. Some pheromone components can inhibit the behavioral responses to other pheromone components. A single pheromone molecule is sufficient to elicit a nerve impulse. The dose-response curve of single pheromone receptor neurons increases over many decades of stimulus intensity. Pheromone receptor cells can resolve single stimulus pulses up to a frequency of 10 pulses/s. Electrophysiological and biochemical studies on perireceptor events suggest that the pheromone molecules interact with the receptor cell while bound to a reduced form of the pheromone binding protein. The enzymatic degradation of pheromone found on the antennae is much too slow to account for the decline of the receptor potential after end of stimulation. The postulated rapid deactivation of the odor molecules absorbed might be performed by an oxidation of the pheromone binding protein. Several second messenger systems seem to be involved in the cellular transduction mechanism (IP3, diacylglycerol, cGMP, Ca2+). It is, however, not excluded that pheromone molecules can gate single ion channels directly and thus elicit the elementary receptor potentials, observed at weak stimulus intensities.  相似文献   

11.
Electrophysiological data from the rodent whisker/barrel cortex indicate that GABAergic, presumed inhibitory, neurons respond more vigorously to stimulation than glutamatergic, presumed excitatory, cells. However, these data represent very small neuronal samples in restrained, anesthetized, or narcotized animals or in cortical slices. Histochemical data from primate visual cortex, stained for the mitochondrial enzyme cytochrome oxidase (CO) and for GABA, show that GABAergic neurons are more highly reactive for CO than glutamatergic cells, indicating that inhibitory neurons are chronically more active than excitatory neurons but leaving doubt about the short-term stimulus dependence of this activation. Taken together, these results suggest that highly active inhibitory neurons powerfully influence relatively inactive excitatory cells but do not demonstrate directly the relative activities of excitatory and inhibitory neurons in the cortex during normal behavior. We used a novel double-labeling technique to approach the issue of excitatory and inhibitory neuronal activation during behavior. Our technique combines high-resolution 2-deoxyglucose (2DG), immunohistochemical staining for neurotransmitter-specific antibodies, and automated image analysis to collect the data. We find that putative inhibitory neurons in barrel cortex of behaving animals are, on average, much more heavily 2DG-labeled than presumed excitatory cells, a pattern not seen in animals anesthetized at the time of 2DG injection. This metabolic activation is dependent specifically on sensory inputs from the whiskers, because acute trimming of most whiskers greatly reduces 2DG labeling in both cell classes in columns corresponding to trimmed whiskers. Our results provide confirmation of the active GABAergic cell hypothesis suggested by CO and single-unit data. We conclude that strong activation of inhibitory cortical neurons must confer selective advantages that compensate for its inherent energy inefficiency.  相似文献   

12.
The mechanism of action of the dimeric enkephalin peptide, biphalin (Tyr-D-Ala-Gly-Phe-NH2)2, which was previously shown to have remarkable high antinociceptive potency and low dependence liability in vivo, has now been studied by electrophysiologic analyses of its effects on the action potential duration (APD) of nociceptive types of sensory dorsal root ganglion (DRG) neurons in culture. Acute application of biphalin (pM-microM) elicited only dose-dependent, naloxone-reversible inhibitory (APD-shortening) effects on DRG neurons. Furthermore, at pM concentrations that evoked little or no alteration of the APD of DRG neurons biphalin selectively antagonized excitatory (APD-prolonging) effects of low (fM-nM) concentrations of bimodally-acting mu and delta opioid agonists and unmasked potent inhibitory effects of these opioids. This dual opioid inhibitory-agonist/excitatory-antagonist property of biphalin is remarkably similar to that previously observed in studies of the ultra-potent opioid analgesic, etorphine on DRG neurons and in sharp contrast to the excitatory agonist action of most mu, delta and kappa opioid alkaloids and peptides when tested at low (pM-nM) concentrations. Chronic treatment of DRG neurons with high (microM) concentrations of biphalin did not result in supersensitivity to the excitatory effects of naloxone nor in tolerance to opioid inhibition effects, in contrast to the excitatory opioid supersensitivity and tolerance that develop in chronic morphine- or DADLE-treated, but not chronic etorphine-treated, neurons. These studies on DRG neurons in vitro may help to account for the unexpectedly high antinociceptive potency and low dependence liability of biphalin as well as etorphine in vivo.  相似文献   

13.
Five conditioned suppression experiments examined the extent to which an appetitively motivated lever-press response can be punished by different components of a backward conditioned stimulus (CS). Using a 0-s unconditioned stimulus UCS–CS interval, Experiments 1 and 2 showed that the initial 3 s of a normally 30-s backward CS served as a more effective punisher than the CS as a whole, Experiment 3 found no such effect if the UCS–CS interval were 3 s rather than 0 s. Experiments 4A and 4B found that if the UCS–CS interval were 0 s, the initial part of the backward CS acquired excitatory properties although the CS as a whole passed a summation test for conditioned inhibition. By contrast, the 3-s UCS–CS interval supported inhibitory conditioning across the whole duration of the backward CS. Taken together, these findings support a modified version of Wagner's sometimes opponent process model, which suggests that different components of a backward CS become either excitatory or inhibitory depending on the components' temporal proximity to the UCS. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Effects of arginine-vasopressin (AVP) on neurons in the central amygdaloid nucleus (ACe) were investigated with rat brain slice preparations using extracellular recording methods. Of 160 ACe neurons tested, 70 cells (44%) were excited and 9 cells (6%) were inhibited by bath application of AVP at 3 x 10(-7) M. The excitatory effects of AVP were dose-dependent and the threshold concentration was approximately 10(-10) to 10(-9) M. The excitatory effects of AVP persisted under blockade of synaptic transmission by perfusing with Ca2+-free and high-Mg2+ medium, whereas the inhibitory effects were abolished by synaptic blockade. AVP-induced effects were mimicked by a V1-receptor agonist and completely blocked by a selective V1-antagonist. V2-agonist produced no effects on ACe neurons and V2-antagonist had no effect on AVP-induced excitation. These results showed that the excitatory effect of AVP on ACe neurons was produced by a direct action through the V1-receptors, whereas the inhibitory response of ACe neurons to AVP seemed to be produced by an indirect action. The results of this study suggest that AVP is involved in the amygdala-relevant functions as a neurotransmitter or a neuromodulator.  相似文献   

15.
Integration of inputs by cortical neurons provides the basis for the complex information processing performed in the cerebral cortex. Here, we have examined how primary visual cortical neurons integrate classical and nonclassical receptive field inputs. The effect of nonclassical receptive field stimuli and, correspondingly, of long-range intracortical inputs is known to be context-dependent: the same long-range stimulus can either facilitate or suppress responses, depending on the level of local activation. By constructing a large-scale model of primary visual cortex, we demonstrate that this effect can be understood in terms of the local cortical circuitry. Each receptive field position contributes both excitatory and inhibitory inputs; however, the inhibitory inputs have greater influence when overall receptive field drive is greater. This mechanism also explains contrast-dependent modulations within the classical receptive field, which similarly switch between excitatory and inhibitory. In order to simplify analysis and to explain the fundamental mechanisms of the model, self-contained modules that capture nonlinear local circuit interactions are constructed. This work supports the notion that receptive field integration is the result of local processing within small groups of neurons rather than in single neurons.  相似文献   

16.
Extracellular recordings were made from the magnocellular neurones of the red nucleus (mRN) in anaesthetised cats. A study was made of the effects of selective excitatory amino acid receptor antagonists on excitatory monosynaptic responses evoked from the sensorimotor cortex (SMC) and cerebellar interpositus nucleus (IPN). Iontophoretically applied CNQX and NBQX antagonised both SMC and IPN responses whereas, D-AP5 inhibited the SMC response but was ineffective to the IPN. At currents that selectively antagonised NMDA responses, CPPene had no effect on either SMC or IPN responses. 7-chlorokynurenate inhibited both SMC and IPN responses but required currents that antagonised both AMPA and NMDA responses and was therefore acting in a non-selective manner. Iontophoretically applied glycine was inhibitory to both agonist and synaptic responses, whilst D-serine potentiated NMDA responses but did not enhance monosynaptic responses of the SMC. However in the presence of either 7-chlorokynurenate or high currents of CNQX that reduced the SMC synaptic activation of the mRN neurones, D-serine attenuated the inhibitory action of these antagonists. It is concluded that monosynaptic responses from the SMC are mediated by both NMDA and non-NMDA receptors whereas the monosynaptic responses evoked from the IPN are mediated only by non-NMDA receptors. The lack of effect of CPPene is consistent with the postulate that two NMDA receptor subtypes are present on mRN neurones.  相似文献   

17.
Aluminum has been implicated in several neurodegenerative conditions including Alzheimer's disease. Because the mammalian olfactory system has an unusual capacity for the uptake and transneuronal spread of inhaled substances such as aluminum, whole cell recording techniques were used to examine the actions of aluminum on basic membrane properties and amino acid receptors on rat olfactory bulb mitral/tufted (M/T) neurons in culture. Aluminum had little direct effects on M/T neurons. Aluminum (100 microM) did not evoke a membrane current or alter action-potential shape or duration. Aluminum also had no marked effects on the family of voltage-gated membrane currents evoked by a series of 10-mV, 50-ms depolarizing steps. However, aluminum dramatically potentiated the current evoked by 30 microM gamma-aminobutyric acid (GABA) at concentrations <100 microM. Conversely, higher concentrations of aluminum blocked the GABA-evoked current. The effects of aluminum on GABA-evoked currents were not voltage dependent. Aluminum (100 microM) equally potentiated both inward currents at -30 mV and outward currents at + 30 mV. At 300 microM, aluminum blocked both inward and outward currents to a similar extent. In some neurons, aluminum only blocked the current and potentiation was not observed. The biphasic action of aluminum on GABA-evoked currents suggests separate binding sites: a high-affinity potentiating site and a low-affinity inhibiting site. Despite its effects on GABA-evoked currents, aluminum did not alter membrane currents evoked by glutamate, N-methyl-D-aspartate, kainate, or glycine. Aluminum also did not reduce spontaneous excitatory synaptic activity, suggesting little, if any, effect on glutamate release. Although a causal role for aluminum in Alzheimer's disease and other neuropathological conditions remains controversial, it is clear that elevated aluminum concentrations in the brain are associated with a variety of cognitive impairments. The present results indicate that aluminum can alter the function of GABAA receptors and may suggest that aluminum can contribute to cognitive impairment through disruption of inhibitory circuits.  相似文献   

18.
1. For the first time in any vertebrate, responses of single olfactory bulb neurons to odorant mixtures were studied quantitatively in the channel catfish, Ictalurus punctatus. 2. Extracellular electrophysiological responses of 61 single olfactory bulb neurons from 36 channel catfish to binary mixtures of amino acids and to their components were recorded simultaneously with the electro-olfactogram (EOG). Tested were a total of 297 mixture trials consisting of 18 different stimulus pairs formed from 8 amino acids. 3. For 42% (126 of the 297) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 171 tests of binary mixtures were excitatory (E; 29%) or suppressive (S; 29%). No response type was associated with any specific mixture across the neurons sampled. 4. Mixture interactions that changed response types (E or S) from those observed to the individual components were rare, because 89% of the responses of single olfactory bulb neurons to the tested binary mixtures were classified similarly as the responses to at least one of the components. 5. Responses of single olfactory bulb neurons were generally predictable for binary mixtures whose component responses were classified as both E, both S, and both N. For binary mixtures whose component responses were classified differently (e.g., one component evoked excitatory responses and the other evoked suppressive responses), the predictability of the response was dependent on the specific mixture type.  相似文献   

19.
The mechanism of sensory transduction in chemosensory neurons of the vomeronasal organ (VNO) is not known. Based on molecular data, it is likely to be different from that mediating sensory transduction in the main olfactory system. To begin to understand this system, we have characterized the electrophysiological properties of dissociated mouse VNO neurons with patch-clamp recording. Sensory neurons were distinguished from nonsensory neurons by the presence of a dendrite, by immunoreactivity for olfactory marker protein, and by the firing of action potentials. The resting potential of VNO neurons was approximately -60 mV, and the average input resistance was 3 Gomega. Current injections as small as 1-2 pA elicited steady trains of action potentials that showed no sign of elicited steady trains of action potentials that showed no sign of adaptation during a 2 sec stimulus duration. The voltage-gated conductances in VNO neurons are distinct from those in olfactory neurons. The Na+ current is composed of two components; the major component was TTX-sensitive (Ki = 3.6 nM). The outward K+ current activates at -30 mV with kinetics 10 times slower than for K+ currents in olfactory neurons. The Ca2+ current is composed of at least two components: an L-type current and a T-type current that activates at -60 mV and is not found in olfactory neurons. We find no evidence for cyclic nucleotide-gated channels in VNO neurons under a variety of experimental conditions, including those that produced large responses in mouse olfactory neurons, which is further evidence for a novel transduction pathway.  相似文献   

20.
1. The present study was undertaken to determine whether various anaesthetic agents affect canine gastric acid secretion independently of other experimental variables. 2. Acid secretory output was determined in dogs with chronic fistulae, by administering sedating doses of anaesthetics commonly used for studying gastric secretory mechanisms in laboratory animals. 3. The anaesthetic agents inhibited gastric acid secretion. As the inhibitory effect of the mixture of anaesthetics was pronounced, an attempt was made to study the effect of each individual anaesthetic agent separately. 4. Acetopromazine was given to sedate dogs. Although it has a long duration of action, it only had a transient inhibitory action on gastric acid secretion of 15-30 min duration. Moreover the drug reduced pentagastrin-stimulated secretion, but had no effect on histamine-stimulated secretion. 5. Thiopentone sodium given with acetopromazine produced a mild inhibitory effect on histamine-stimulated secretion for 45 min, but produced a more pronounced and sustained inhibitory effect on pentagastrin-stimulated secretion. 6. Trilene significantly inhibited both histamine- and pentagastrin-stimulated secretion. The effect on the latter was more pronounced and sustained. 7. Trauma had no significant effect on histamine-stimulated secretion, but showed a slight inhibitory effect on pentagastrin-stimulated secretion. 8. Experiments to study gastric secretory mechanisms and antisecretory drugs should take account of the potential inhibitory effects of anaesthetics. Where possible, studies in conscious dogs with gastric fistulae are preferable to experiments on anaesthetized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号