首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ammonium assimilation was studied by feeding [15N]ammonium to actively growing mycelium of Agaricus bisporus. Products of ammonium assimilation were analysed using 15N-NMR. Participation of glutamine synthetase, glutamate synthase and NADP-dependent glutamate dehydrogenase was determined by inhibiting glutamine synthetase with phosphinothricin and glutamate synthase with azaserine. Our results clearly indicate that, under the conditions used, ammonium assimilation is mainly catalysed by the enzymes of the glutamine synthetase/glutamate synthase pathway. No indications were found for participation of NADP-dependent glutamate dehydrogenase. Furthermore, 15N-labelling shows that transamination of glutamate with pyruvate to yield alanine is a major route in nitrogen metabolism. Another major route is the formation of N-acetylglucosamine. Compared to the formation of N-acetylglucosamine there was only a limited formation of arginine.  相似文献   

2.
Pseudomonas sp. strain ADP metabolizes atrazine to carbon dioxide and ammonia via the intermediate hydroxyatrazine. The genetic potential to produce hydroxyatrazine was previously attributed to a 1.9-kb AvaI DNA fragment from strain ADP (M. L. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373-3378, 1995). In this study, sequence analysis of the 1.9-kb AvaI fragment indicated that a single open reading frame, atzA, encoded an activity transforming atrazine to hydroxyatrazine. The open reading frame for the chlorohydrolase was determined by sequencing to be 1,419 nucleotides and encodes a 473-amino-acid protein with a predicted subunit molecular weight of 52,421. The deduced amino acid sequence matched the first 10 amino acids determined by protein microsequencing. The protein AtzA was purified to homogeneity by ammonium sulfate precipitation and anion-exchange chromatography. The subunit and holoenzyme molecular weights were 60,000 and 245,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. The purified enzyme in H2(18)O yielded [18O]hydroxyatrazine, indicating that AtzA is a chlorohydrolase and not an oxygenase. The most related protein sequence in GenBank was that of TrzA, 41% identity, from Rhodococcus corallinus NRRL B-15444R. TrzA catalyzes the deamination of melamine and the dechlorination of deethylatrazine and desisopropylatrazine but is not active with atrazine. AtzA catalyzes the dechlorination of atrazine, simazine, and desethylatrazine but is not active with melamine, terbutylazine, or desethyldesisopropylatrazine. Our results indicate that AtzA is a novel atrazine-dechlorinating enzyme with fairly restricted substrate specificity and contributes to the microbial hydrolysis of atrazine to hydroxyatrazine in soils and groundwater.  相似文献   

3.
The gene (xynA) encoding a surface-exposed, S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 was cloned and expressed in Escherichia coli. A 3.8-kb fragment was amplified from chromosomal DNA by using primers directed against conserved sequences of endoxylanases isolated from other thermophilic bacteria. This PCR product was used as a probe in Southern hybridizations to identify a 4.6-kb EcoRI fragment containing the complete xynA gene. This fragment was cloned into E. coli, and recombinant clones expressed significant levels of xylanase activity. The purified recombinant protein had an estimated molecular mass (150 kDa), temperature maximum (80 degrees C), pH optimum (pH 6.3), and isoelectric point (pH 4.5) that were similar to those of the endoxylanase isolated from strain JW/SL-YS 485. The entire insert was sequenced and analysis revealed a 4,044-bp open reading frame encoding a protein containing 1,348 amino acid residues (estimated molecular mass of 148 kDa).xynA was preceded by a putative promoter at -35 (TTAAT) and -10 (TATATT) and a potential ribosome binding site (AGGGAG) and was expressed constitutively in E. coli. The deduced amino acid sequence showed 30 to 96% similarity to sequences of family F beta-glycanases. A putative 32-amino-acid signal peptide was identified, and the C-terminal end of the protein contained three repeating sequences 59, 64, and 57 amino acids) that showed 46 to 68% similarity to repeating sequences at the N-terminal end of S-layer and S-layer-associated proteins from other gram-positive bacteria. These repeats could permit an interaction of the enzyme with the S-layer and tether it to the cell surface.  相似文献   

4.
The first identification and characterization of a prokaryotic gene (spsA) encoding sucrose-phosphate synthase (SPS) is reported for Synechocystis sp. strain PCC 6803, a unicellular non-nitrogen-fixing cyanobacterium. Comparisons of the deduced amino acid sequence and some relevant biochemical properties of the enzyme with those of plant SPSs revealed important differences in the N-terminal and UDP-glucose binding site regions, substrate specificities, molecular masses, subunit compositions, and regulatory properties.  相似文献   

5.
Attacin, a bactericidal small protein is produced by the giant silk moth Hyalophora cecropia. This paper deals with our efforts to clone the attacin cDNA in a bacterial vector to express it in Escherichia coli and produce the protein in sufficient amount, for further studies. We chose two inducible expression vector/bacterial cell systems: pPL-lambda/N99cI+ cells which is able to be induced by nalidixic acid, and pET3d/BL21(DE3) cells carrying a T7 RNA polymerase gene which is IPTG-inducible. After cloning in the pPL-lambda system and under no addition of the inducer, isolated transformants carried this plasmid with at least 2 concurrent deletions that drastically affected attacin expression, even though attacin gene seems to be intact as deduced by its PCR amplification. It was concluded that basal attacin expression occurred in this system and bacterial growth was limited. Plasmid deletions may have emerged by selection pressure as a way to avoid bactericidal expression and allow bacteria survival. The second cloning attempt was done in pET3d vector/BL21 cells, that should not express the cloned sequence (they lack T7 RNA polymerase gene). Transformed BL21 cells gave 3 recombinant plasmids, 2 of them presented a C deletion that generated an early stop signal in the attacin coding region. The third clone, pET-ATT18, carrying an intact gene, was transferred to BL21(DE3)-IPTG inducible cells in order to be expressed. Attacin was undetectable in stained gels or by Western blot analysis. However, expression was visualized in grown cells after 30 min of IPTG induction and 5 min of [35S]-methionine labeling, as a 22.5 kDa protein band by using gel electrophoresis and fluorography. This low level of expression drastically affected bacterial growth. Considering that attacin has no lytic activity, these results suggest that this molecule should block bacterial growth directly at the cytoplasm by an unknown mechanism, since no signal peptide coding sequence was incorporated in this gene construction, precluding periplasmic or external destination of this protein.  相似文献   

6.
We cloned the streptokinase (STK) gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a K(m) = 0.70 microM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing.  相似文献   

7.
We have previously cloned and sequenced three members of a bile acid-inducible gene family from Eubacterium sp. strain VPI 12708 that encode 27,000-M(r) polypeptides. Two copies of these genes (baiA1 and baiA3) are identical, while the third copy (baiA2) encodes a polypeptide sharing 92% amino acid identity with the baiA1 and baiA3 gene products. We have overexpressed the baiA1 gene in Escherichia coli and analyzed the expressed activity. Thin-layer chromatography of 14C-labeled bile acid products from reactions using cell-free extracts revealed a 3 alpha-hydroxysteroid dehydrogenase activity for the BaiA1 protein. The BaiA1 protein could utilize both NAD+ and NADP+, and the preferred steroid substrate was the cholyl-coenzyme A conjugate rather than free cholic acid. These results show that the BaiA proteins are novel 3 alpha-hydroxysteroid dehydrogenases.  相似文献   

8.
An avian pathogenic Escherichia coli strain M1000 showed a clear zone of erythrocyte lysis on sheep blood agar plates. The hemolytic activity was not detected in the culture supernatant nor was any DNA sequence homologous to the E. coli alpha-hemolysin gene detected in the chromosome or plasmid DNA of the strain, indicating that the observed hemolysis was different from alpha-type. To identify the genetic determinant responsible for the hemolysis, we performed random Tn5 insertional mutagenesis and obtained one mutant, named M5005, that totally lacked the hemolytic activity. Cloning and nucleotide sequencing of the region flanking the transposon insertion site in the M5005 chromosome revealed that the transposon was inserted within an open reading frame of the cyclic AMP receptor protein (CRP) gene, which is involved in one of the global regulatory networks of gene expression in E. coli. Nucleotide sequence analysis of the intact crp gene of the strain M1000 showed that the CRP protein of M1000 is 99% identical to that of K-12. Introduction of the intact crp gene on a low copy plasmid into the mutant M5005 restored the hemolytic phenotype, confirming that the mutation site in M5005 was in the crp gene. CRP plays a central role in catabolite repression, the phenomenon by which the synthesis of many enzymes required to metabolize various sugars is repressed in the presence of glucose. When the hemolytic activity of E. coli M1000 grown in the presence of glucose was examined, the hemolysis was totally impaired. These results indicate that the avian pathogenic E. coli strain M1000 produces a hemolysin the expression of which is dependent on crp gene function.  相似文献   

9.
The expression of the yeast Ure2 protein and its two N- and C-terminal HA-(YPYPVDYA) epitope and His-tag fusions has been enhanced in E. coli by selected silent mutagenesis of the URE2 gene. The two Arg-AGA codons at positions 253 and 254 of the URE2 gene coding sequence were exchanged by CGT codons accordingly. This has allowed an increased yield (up to 100-fold) of the full-length protein synthesized. Western blotting with HA-epitope-specific antibodies using N- and C-terminal Ure2p-HA(epitope)-His-tag fusion constructs confirmed the integrity of the recombinant proteins. The N-(C-) terminal tagged proteins were shown to possess biological activity of the natural Ure2 protein.  相似文献   

10.
Different mycobacteria carrying cloned genes for heterologous protective antigens have been proposed as vaccine vehicles. In this study, the stability of the expression of beta-galactosidase was studied in Mycobacterium smegmatis using integrative (pMV361::lacZ) and replicative (pMV261::lacZ) vectors. Recombinant M. smegmatis forms blue colonies on X-gal plates. Occasional white mutants encountered while plating on X-gal plates were genetically analysed. The loss of lacZ phenotype was due to insertion of an IS element in lacZ gene of integrative vector whereas in case of replicative vectors, loss of lacZ phenotype was due to deletions of different sizes in the lacZ gene and the Phsp60 promoter region. The frequency of such events was rare, 1.7 x 10(-5) in integrative vector and 2 x 10(-3) in the case of replicative vector. The integrative vector seemed more stable in terms of expression of foreign genes in mycobacteria. Hence, the rearrangements reported in the present study warrant serious consideration before implementing mycobacteria as recombinant vaccines.  相似文献   

11.
A synthetic gene encoding 'core' streptavidin (SAV) [amino acid (aa) residues 13-140 of Streptomyces avidinii SAV] has been efficiently expressed in Escherichia coli from the IPTG-inducible lac promoter of plasmid pET3a. In this system, expression levels are nearly tenfold greater for the synthetic gene than for the corresponding native gene. The synthetic gene was constructed from overlapping oligodeoxyribonucleotides whose sequences were optimized to incorporate codons preferred by highly expressed E. coli genes. Biochemical characterizations by gel methods, aa analysis, N-terminal sequencing, and size exclusion chromatography show that the synthetic gene product purified by affinity chromatography possesses the properties expected for core SAV.  相似文献   

12.
A stable DNA/protein complex having an apparent molecular mass of approximately 150 kDa was purified from nitrate-limited cultures of the cyanobacterium Synechococcus sp. strain PCC 7942. Amino-terminal peptide sequencing indicated that the polypeptide was structurally similar to the Dps protein of Escherichia coli; Dps is also known as the product of the starvation- and stationary-phase-inducible gene, pexB. The 150-kDa complex dissociated into a 22-kDa protein monomer after boiling in 2% SDS. The 150-kDa complex preparation had approximately a 10% nucleic acid content and upon dissociation released DNA fragments that were sensitive to S1 nuclease digestion. Immunoblot data indicated that the complex accumulates during stationary phase and during nitrogen, sulfur, and phosphorus limitation. DNA-binding assays indicated that the protein nonspecifically binds both linear and supercoiled DNA. Circular dichroism spectroscopy revealed that the Synechococcus sp. Dps-like protein contains extensive regions of alpha-helical secondary structure. We propose that the 150-kDa complex represents a hexameric aggregate of the Dps-like protein complexed with single-stranded DNA and serves to bind a portion of the chromosomal DNA under nutrient-limited conditions.  相似文献   

13.
Four Rep proteins are encoded by the human parvovirus adeno-associated virus type 2 (AAV). The two largest proteins, Rep68 and Rep78, have been shown in vitro to perform several activities related to AAV DNA replication. The Rep78 and Rep68 proteins are likely to be involved in the targeted integration of the AAV DNA into human chromosome 19, and the full characterization of these proteins is important for exploiting this phenomenon for the use of AAV as a vector for gene therapy. To obtain sufficient quantities for facilitating the characterization of the biochemical properties of the Rep proteins, the AAV rep open reading frame was cloned and expressed in Escherichia coli as a fusion protein with maltose-binding protein (MBP). Recombinant MBP-Rep68 and MBP-Rep78 proteins displayed the following activities reported for wild-type Rep proteins when assayed in vitro: (i) binding to the AAV inverted terminal repeat (ITR), (ii) helicase activity, (iii) site-specific (terminal resolution site) endonuclease activity, (iv) binding to a sequence within the integration locus for AAV DNA on human chromosome 19, and (v) stimulation of radiolabeling of DNA containing the AAV ITR in a cell extract. These five activities have been described for wild-type Rep produced from mammalian cell extracts. Furthermore, we recharacterized the sequence requirements for Rep binding to the ITR and found that only the A and A' regions are necessary, not the hairpin form of the ITR.  相似文献   

14.
To obtain affinity adsorbents with good mechanical resistance, suitable for the purification of maltose-binding protein (MBP) from Escherichia coli and genetically engineered proteins fused to MBP, a series of supports were prepared by grafting amylose on to agarose by different chemistries. Their capacities for MBP and their abilities to be used at relatively high flow-rates were examined. Efficient supports were most conveniently prepared by coupling amylose to epoxy-activated agarose in an aqueous-organic mixture.  相似文献   

15.
secA is translationally regulated by the protein secretion proficiency state of the Escherichia coli cell. This regulation was explored by making signal sequence mutations in the gene upstream of secA, gene X, which promotes secA translational coupling. Gene X signal sequence mutants were constitutive for secA expression, while prlA alleles partially restored secA regulation. These results show that interaction of the pre-gene X protein with the translocon is required for proper secA regulation. Furthermore, gene X signal sequence mutations disrupted secA regulation only in the cis configuration. We propose that nascent pre-gene X protein interacts with the translocon during its secretion to constitute the secretion sensor.  相似文献   

16.
The env gene of SIV and HIV-1 encodes a single glycoprotein gp 160, which is processed to give a noncovalent complex of the soluble glycoprotein gp120 and the transmembrane glycoprotein gp41. The extracellular region (ectodomain), minus the N-terminal fusion peptide, of gp41 from HIV-1 (residues 27-154) and SIV (residues 27-149) have been expressed in Escherichia coli. These insoluble proteins were solubilized and subjected to a simple purification and folding scheme, which results in high yields of soluble protein. Purified proteins have a trimeric subunit composition and high alpha-helical content, consistent with the predicted coil-coil structure. SIV gp41 containing a double cysteine mutation was crystallized. The crystals are suitable for X-ray structure determination and, preliminary analysis, together with additional biochemical evidence, indicates that the gp41 trimer is arranged as a parallel bundle with threefold symmetry.  相似文献   

17.
An engineered fusion protein containing two tandem lactose permease molecules (permease dimer) exhibits high transport activity and is used to test the phenomenon of negative dominance. Introduction of the mutation Glu-325-->Cys into either the first or the second half of the dimer results in a 50% decrease in activity, whereas introduction of the mutation into both halves of the dimer abolishes transport. Lactose transport by permease dimer is completely inactivated by N-ethylmaleimide; however, 40-45% activity is retained after N-ethylmaleimide treatment when either the first or the second half of the dimer is replaced with a mutant devoid of cysteine residues. The observations demonstrate that both halves of the fusion protein are equally active and suggest that each half may function independently. To test the possibility that oligomerization between dimers might account for the findings, a permease dimer was constructed that contains two different deletion mutants that complement functionally when expressed as untethered molecules. Because this construct does not catalyze lactose transport to any extent whatsoever, it is unlikely that the two halves of the dimer interact or that there is an oligomeric interaction between dimers. The approach is consistent with the contention that the functional unit of lactose permease is a monomer.  相似文献   

18.
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.  相似文献   

19.
The second lysine decarboxylase gene (ldc) is at 4.7 min on the Escherichia coli chromosome [Kikuchi et al., J. Baceriol. 179, 4486-4492 (1997)]. This report showes that the expression of ldc as well as cadA was induced at stationary phase in the wild type of E. coli. The ldc was not expressed in a rpoS deletion mutant of E. coli at any growing stage. In contrast, cadA was expressed in the rpoS mutant. Thus, we conclude that the expression of ldc but not cadA at stationary phase is regulated by a RpoS-dependent mechanism (s) in E. coli.  相似文献   

20.
The gene encoding the D-aminoacylase of Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) was cloned and its complete nucleotide sequence was identified. The D-aminoacylase structural gene consists of 1452 nucleotides and encodes 484 amino acid residues. The molecular weight of D-aminoacylase was calculated to be 51,918. This value agreed well with the apparent molecular weight of 52,000 found for the purified enzyme from Alcaligenes A-6 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The N-terminal amino acid sequence (NH2-SQSDSQPFDLLRAG-) predicted by the nucleotide sequence exactly matched those of the purified D-aminoacylase both from Alcaligenes A-6 and from cloned Escherichia coli (E. coli), with the exception of the removal of the N-terminal methionine processed after translation. The purified recombinant enzyme showed almost the same enzymatic properties as the native enzyme from Alcaligenes A-6. Alcaligenes A-6 D-aminoacylase showed 25-29% homology with L-aminoacylases from Bacillus stearothermophilus, porcine and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号