首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the localization of the normal cellular isoform of prion protein (PrPc) in mammalian skeletal muscle. Using two anti-PrP antibodies, the neuromuscular junction (NMJ) was preferentially stained after immunohistofluorescence. The mouse, hamster, and human NMJ displayed a fluorescent signal specific for PrPc. Postembedding immunoelectron microscopy analysis performed in the mouse muscle showed that the PrPc-specific colloidal gold immunolabelling was concentrated over the sarcoplasmic cytoplasm. The membrane of the postsynaptic domain was devoid of gold particles, while a weak signal was occasionally observed close to the presynaptic vesicles of the terminal axons. These results indicate that the PrP gene is expressed in mammalian muscle at the NMJ. The subsynaptic sarcoplasm of the NMJ appears to be the privileged site where PrPc presumably associated with endosome membrane may play a role in either physiological activity or maintenance of the morphological integrity of the synapse.  相似文献   

2.
3.
4.
The vertebrate skeletal neuromuscular junction is the site at which motor neurons communicate with their target muscle fibers. At this synapse, as at synapses throughout the nervous system, efficient and appropriate communication requires the formation and precise alignment of specializations for transmitter release in the axon terminal with those for transmitter detection in the postsynaptic cell. Classical developmental studies demonstrate that synapse formation at the neuromuscular junction is a mutually inductive event; neurons induce postsynaptic differentiation in muscle cells and myofibers induce presynaptic differentiation in motor axon terminals. More recent experiments indicate that Schwann cells, which cap axon terminals, also play an active role in the formation and maintenance of the neuromuscular junction. Here, we review recent advances in the identification of molecules mediating such inductive interactions and the mechanisms by which they produce their effects. Although our discussion concerns events at developing neuromuscular junctions, it seems likely that similar molecules and mechanisms may act at neuron-neuron synapses in the peripheral as well as the central nervous system.  相似文献   

5.
The postsynaptic membrane of the neuromuscular junction is highly enriched in rapsyn, which is thought to interact directly with nicotinic acetylcholine receptors (AChR) and anchor them at the synapse. We expressed rapsyn with or without AChRs in Xenopus embryos by mRNA injection. Co-expression of AChR and rapsyn caused the clustering of these two proteins in cultured cells isolated from the injected embryos. When rapsyn was expressed alone, it also became clustered at the substratum-facing membrane in cultured cells and at cell-cell contacts in whole mount embryos. No clusters were observed in cells that expressed AChRs alone. In rapsyn-expressing cells, proteins that are tyrosine phosphorylated as shown by anti-phosphotyrosine antibody labeling were concentrated at rapsyn clusters. Rapsyn itself does not appear to be a substrate for tyrosine kinase. This suggests that other phosphotyrosine-containing proteins are co-clustered with rapsyn in these cells.  相似文献   

6.
Several subunits that commonly have been regarded as neuronal-type nicotinic acetylcholine receptor (nAChR) subtypes, have been found in the postjunctional endplate membrane of adult skeletal muscle fibres. The postsynaptic function of these neuronal-type nAChR subtypes at the neuromuscular junction has been investigated by using aequorin luminescence and fluorescence confocal imaging. A biphasic elevation of intracellular Ca2+ is elicited by prolonged nicotinic action at the mouse muscle endplates. The fast and slow Ca2+ components are operated by a postsynaptic muscle- and colocalized neuronal-type nAChR, respectively. Neuromuscular functions may be regulated by a dual nAChR system to maintain the normal postsynaptic excitability. Certain neuronal-type nAChR may be endowed with the same functional role in the central nervous system also.  相似文献   

7.
The accumulation of dystrophin and associated proteins at the postsynaptic membrane of the neuromuscular junction and their co-distribution with nicotinic acetylcholine receptor (AChR) clusters in vitro suggested a role for the dystrophin complex in synaptogenesis. Co-transfection experiments in which alpha- and beta-dystroglycan form a complex with AChR and rapsyn, a peripheral protein required for AChR clustering (Apel, D. A., Roberds, S. L., Campbell, K. P., and Merlie, J. P. (1995) Neuron 15, 115-126), suggested that rapsyn functions as a link between AChR and the dystrophin complex. We have investigated the interaction between rapsyn and beta-dystroglycan in Torpedo AChR-rich membranes using in situ and in vitro approaches. Cross-linking experiments were carried out to study the topography of postsynaptic membrane polypeptides. A cross-linked product of 90 kDa was labeled by antibodies to rapsyn and beta-dystroglycan; this demonstrates that these polypeptides are in close proximity to one another. Affinity chromatography experiments and ligand blot assays using rapsyn solubilized from Torpedo AChR-rich membranes and constructs containing beta-dystroglycan C-terminal fragments show that a rapsyn-binding site is present in the juxtamembranous region of the cytoplasmic tail of beta-dystroglycan. These data point out that rapsyn and dystroglycan interact in the postsynaptic membrane and thus reinforce the notion that dystroglycan could be involved in synaptogenesis.  相似文献   

8.
The selective concentration of neurotransmitter receptors at the postsynaptic membrane is an essential aspect of synaptic differentiation and function. Agrin is an extracellular matrix protein that is likely to direct the accumulation of acetylcholine receptors and several other postsynaptic elements at developing and regenerating neuromuscular junctions. How agrin interacts with the membrane to bring about these changes is unknown. We now report the identification and purification of a protein complex from Torpedo electric organ postsynaptic membranes that is likely to serve as an agrin receptor. The native receptor is a heteromeric complex of two membrane glycoproteins of 190 kDa and 50 kDa. The 190 kDa subunit is sufficient to bind ligand. Peptide sequence analysis revealed that the 190 kDa and 50 kDa subunits are related to the dystrophin-associated glycoproteins alpha- and beta-dystroglycan, respectively. No other candidate agrin receptors were detected. The identification of the agrin receptor opens new avenues toward a mechanistic understanding of synapse differentiation.  相似文献   

9.
Neuromuscular terminals of a single motoneuron to four muscles (CPV7a, GM5a, CV2, and CV3) in the stomach of the blue crab Callinectes sapidus showed structural evidence for the exocytotic release of dense-core vesicles exclusively at synapses. The primary evidence was the appearance of dense cores in the synaptic cleft, accompanied by indentations of the presynaptic or postsynaptic membrane. In their simplest form, these consisted of an omega-shaped figure of the presynaptic membrane enclosing one dense core, denoting release of a single dense-core vesicle. A larger indentation of the presynaptic membrane enclosing several dense cores denoted multiple release. A more complex form of multiple release was where the presynaptic membrane was normal, but the postsynaptic membrane elaborated into a sac projecting into the granular sarcoplasm and filled with dense cores. The postsynaptic sac in some instances was compressed into a thin, fingerlike extension, which lacked dense cores and, at its distal end, separated into small cisternae, suggesting a mechanism for membrane recycling. Profiles depicting single and multiple releases of dense-core vesicles were found more frequently at neuromuscular terminals that release relatively large amounts of transmitter with a single stimulus, such as CV2 and CV3, compared to those releasing smaller amounts, such as CPV7a and GM5a. The disparity in release sites among the four muscles of this single motor unit and the fact that many of the multiple-release figures were closely adjacent to the active zones for transmitter release suggest a possible modulatory role for dense-core vesicles in synaptic transmission. Such modulation may be long lasting, as implied by the postsynaptic sacs, which may permit prolonged release of the contents of their dense cores into the synaptic cleft. This is in keeping with the functional role of these stomach muscles, which is to be continuously active for long periods of time.  相似文献   

10.
There is a steadily growing body of experimental data describing the diffusion of acetylcholine in the neuromuscular junction and the subsequent miniature endplate currents produced at the postsynaptic membrane. To gain further insights into the structural features governing synaptic transmission, we have performed calculations using a simplified finite element model of the neuromuscular junction. The diffusing acetylcholine molecules are modeled as a continuum, whose spatial and temporal distribution is governed by the force-free diffusion equation. The finite element method was adopted because of its flexibility in modeling irregular geometries and complex boundary conditions. The resulting simulations are shown to be in accord with experiment and other simulations.  相似文献   

11.
Presynaptic terminals contain several specialized compartments, which have been described by electron microscopy. We show in an identified Drosophila neuromuscular synapse that several of these compartments-synaptic vesicle clusters, presynaptic plasma membrane, presynaptic cytosol, and axonal cytoskeleton-labeled by specific reagents may be resolved from one another by laser scanning confocal microscopy. Using a panel of compartment-specific markers and Drosophila shibire(ts1) mutants to trap an intermediate stage in synaptic vesicle recycling, we have examined the localization and redistribution of dynamin within single synaptic varicosities at the larval neuromuscular junction. Our results suggest that dynamin is not a freely diffusible molecule in resting nerve terminals; rather, it appears localized to synaptic sites by association with yet uncharacterized presynaptic components. In shi(ts1) nerve terminals depleted of synaptic vesicles, dynamin is quantitatively redistributed to the plasma membrane. It is not, however, distributed uniformly over presynaptic plasmalemma; instead, fluorescence images show "hot spots" of dynamin on the plasma membrane of vesicle-depleted nerve terminals. We suggest that these dynamin-rich domains may mark the active zones for synaptic vesicle endocytosis first described at the frog neuromuscular junction.  相似文献   

12.
This report demonstrates that ecdysteroids can reduce synaptic transmission at an intermolt stage of a crustacean tonic neuromuscular junction by acting at a presynaptic site. The steroid molting hormone, 20-hydroxyecdysone (20-HE), appears to act through a rapid, nongenomic mechanism that decreases the probability of synaptic vesicle release and reduces the number of release sites. Quantal analysis revealed that fewer vesicles were released for a given stimulus when 20-HE was present, and this in turn accounted for the reduced synaptic efficacy. Reduced synaptic efficacy produced smaller evoked postsynaptic currents and smaller excitatory postsynaptic potentials (EPSPs) across the muscle fiber membrane. The reduction in EPSPs was observed among muscle fibers that were innervated by high- or low-output terminals. The behavior of crustaceans/crayfish during the molt cycle, when 20-HE is high, may be explained by the reduction in synaptic transmission. Crustaceans become quiescent during the premolt periods as do insects. The effects of 20-HE can be reversed with the application of the crustacean neuromodulator serotonin, which enhances synaptic transmission.  相似文献   

13.
14.
Voltage-gated sodium channels (VGSCs) are concentrated in the postsynaptic membrane at the adult rat neuromuscular junction (NMJ). We have used immunolabelling to determine the pattern of initial VGSC accumulation during development. At birth, but not 3 days before, VGSC labelling is detectable at the NMJ and in the perijunctional (periJ) membrane but not elsewhere. A much higher density cluster of VGSCs forms at the NMJ itself 1-2 weeks later. If the nerve is cut 2 days after birth, VGSC labelling persists in the periJ region for at least 4 weeks but the clustering of VGSCs at the NMJ fails to develop. Thus an early, stable accumulation of VGSCs develops near the NMJ at least a week before high density postsynaptic VGSC clusters form.  相似文献   

15.
16.
Utrophin is a dystrophin-related cytoskeletal protein expressed in many tissues. It is thought to link F-actin in the internal cytoskeleton to a transmembrane protein complex similar to the dystrophin protein complex (DPC). At the adult neuromuscular junction (NMJ), utrophin is precisely colocalized with acetylcholine receptors (AChRs) and recent studies have suggested a role for utrophin in AChR cluster formation or maintenance during NMJ differentiation. We have disrupted utrophin expression by gene targeting in the mouse. Such mice have no utrophin detectable by Western blotting or immunocytochemistry. Utrophin-deficient mice are healthy and show no signs of weakness. However, their NMJs have reduced numbers of AChRs (alpha-bungarotoxin [alpha-BgTx] binding reduced to approximately 60% normal) and decreased postsynaptic folding, though only minimal electrophysiological changes. Utrophin is thus not essential for AChR clustering at the NMJ but may act as a component of the postsynaptic cytoskeleton, contributing to the development or maintenance of the postsynaptic folds. Defects of utrophin could underlie some forms of congenital myasthenic syndrome in which a reduction of postsynaptic folds is observed.  相似文献   

17.
18.
The microtubule protein Tctex-1 was cloned from Torpedo electroplax, a biochemical model of the neuromuscular junction, using the unique domain of Fyn in the yeast two hybrid system. Binding of Tctex-1 and Fyn also occurred in vitro. Torpedo Tctex-1 was contained within the molecular motor protein dynein. A Src class kinase was also complexed with dynein. Tctex-1 was enriched in electric organ vs. skeletal muscle, was present in the postsynaptic membrane, and coprecipitated with the acetylcholine receptor. The sequence of Tctex-1 contained a tyrosine phosphorylation motif and Tctex-1 could be phosphorylated by Fyn in vitro and in vivo. These data demonstrated that Tctex-1-containing dynein is a cytoskeletal element at the acetylcholine receptor-enriched postsynaptic membrane and suggested that Tctex-1 may be a substrate for Fyn.  相似文献   

19.
The functional integrity of the neuromuscular synapse requires that sufficient numbers of acetylcholinesterase (AChE) molecules be localized on the specialized extracellular matrix between the nerve terminal and the post-synaptic membrane. Multiple interrelated levels of regulation are necessary to accomplish this complex task including the spatial and temporal restriction of AChE mRNA expression within the muscle fiber, local translation and assembly of AChE polypeptides, and focused accumulation of AChE molecules on the extracellular matrix. This is accomplished in part through the organization of other extracellular matrix molecules into a complex which further associates with acetylcholine receptors and their accompanying molecules. Finally, the mature neuromuscular junction contains molecules which can act as receptors for the attachment of AChE which in turn may allow for the turnover of this enzyme at the synapse. This brief review will focus mainly on contributions from our laboratory towards understanding the mechanisms involved in organizing AChE molecules at the neuromuscular synapse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号