首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arthroplasty outcome is influenced by the 'quality' of bone preparation for implant insertion. Surgeons face increasing choices of technique and instrumentation, yet clinical scoring methods assess the overall outcome and patient satisfaction but not the bone cuts directly. 'Quality management' of bone reshaping is needed to evaluate different bone cutting methods and computer assisted orthopaedic surgery (CAOS) systems. Analyses and experiments in this study were formulated for measurement and computation of four quantitative characteristics of bone preparation 'quality' and produced a highly condensed index for each. These represented (a) surface finish of cuts, (b) implant fit/looseness possible with the cut shape, (c) implant location/misalignment, and (d) accuracy of individual planar cuts. Assessment of synthetic bone cuts verified the robustness of the method for wide application in arthroplasty intraoperatively, in vitro and for comparing navigation systems.  相似文献   

2.
Contact mechanics analysis for a typical McKee-Farrar metal-on-metal hip implant was carried out in this study. The finite element method was used to predict the contact area and the contact pressure distribution at the bearing surfaces. The study investigated the effects of the cement and underlying bone, the geometrical parameters such as the radial clearance between the acetabular cup and the femoral head, and the acetabular cup thickness, as well as other geometrical features on the acetabular cup such as lip and studs. For all the cases considered, the predicted contact pressure distribution was found to be significantly different from that based upon the classical Hertz contact theory, with the maximum value being away from the centre of the contact region. The lip on the cup was found to have a negligible effect on the predicted contact pressure distribution. The presence of the studs on the outside of the cup caused a significant increase in the local contact pressure distribution, and a slight decrease in the contact region. Reasonably good agreement of the predicted contact pressure distribution was found between a three-dimensional anatomical model and a simple two-dimensional axisymmetric model. The interfacial boundary condition between the acetabular cup and the underlying cement, modelled as perfectly fixed or perfectly unbonded, had a negligible effect on the predicted contact parameters. For a given radial clearance of 0.079 mm, the decrease in the thickness of the acetabular cup from 4.5 to 1.5 mm resulted in an increase in the contact half angle from 15 degrees to 26 degrees, and a decrease in the maximum contact pressure from 55 to 20 MPa. For a given acetabular cup thickness of 1.5 mm, a decrease in the radial clearance from 0.158 to 0.0395 mm led to an increase in the contact half-angle from 20 degrees to 30 degrees, and a decrease in the maximum contact pressure from 30 to 10 MPa. For zero clearance, although the contact pressure was significantly reduced over most of the contact area, the whole acetabular cup came into contact with the femoral head, leading to stress concentration at the edge of the cup. Design optimization of the geometrical parameters, in terms of the acetabular cup thickness and the radial clearance, is important, not only to minimize the contact stress at the bearing surfaces, but also to avoid equatorial and edge contact.  相似文献   

3.
Contact mechanics of ultra high molecular weight polyethylene (UHMWPE) cups against metallic femoral heads for artificial hip joints is considered in this study. Both the experimental measurement of the contact area and the finite element prediction of the contact radius, maximum contact pressure and maximum Von Mises stress have been carried out for a wide range of contemporary artificial hip joints. Good agreement of the contact radius has been found between the experimental measurements and the finite element predictions based upon an elastic modulus of 1000 MPa and a Poisson's ratio of 0.4 for UHMWPE material under various loads up to 2.5 kN. It has been shown that the half contact angle for all the cup/head combinations considered in this study is between 40 degrees and 50 degrees under a load of 2.5 kN. The importance of this result has been discussed with respect to the anatomical position of the cup when placed in the body and the selection of a simple wear-screening test for artificial hip joints. The predicted contact radius and maximum contact pressure from the finite element model have also been compared with a simple elasticity analysis. It has been shown that the difference in the predicted contact radius between the two methods is reduced for more conforming contacts between the femoral head and the acetabular cup and smaller UHMWPE cup thickness. However, good agreement of the predicted maximum contact pressure has been found for all the combinations of the femoral head and the acetabular cup considered in this study. The importance of contact mechanics on the clinical performance of artificial hip joint replacements has also been discussed.  相似文献   

4.
Pertrochanteric femoral fractures are common and intramedullary nailing is an accepted method for their surgical treatment. Accurate placement of the implant is essential to ensure fixation. The conventional technique can require multiple guide wire passes, and relies heavily on fluoroscopy. A computer-assisted planning and navigation system based on two-dimensional fluoroscopy for guide wire placement in the femoral neck has been developed, in order to perform intramedullary pertrochanteric fracture fixation using the proximal femoral nail (PFNA). The planning process was supported by a 'zero-dose C-arm navigation' system. The PFNA was inserted into 12, intact, femoral sawbones guided by the computer-based navigation, and into 12, intact, femoral sawbones using a conventional fluoroscopic-assisted technique. Guide wire and subsequent blade placement in the femoral neck was evaluated. The computer-assisted technique achieved a significant decrease in the number of required fluoroscopic images and in the number of guide wire passes. The obtained average blade placement accuracy in the femoral neck was equivalent to the conventional technique. The operation time was significantly longer in the navigation-assisted group. The addition of computer-assisted planning and surgical guidance to the intramedullary nailing of pertrochanteric femoral fractures offers a number of clinical benefits based on the results of this sawbone study. Further studies including fractured sawbones and cadaver models with extension of the navigation process to all steps of PFNA introduction and with the goal of reducing operation time are indispensable before integration of this navigation system into clinical practice.  相似文献   

5.
The contact mechanics in ceramic-on-ceramic hip implants are investigated in this study under the microseparation condition where the edge contact occurs between the superolateral rim of the acetabular cup and the femoral head. A three-dimensional finite element model is developed to examine the effect of the microseparation distance between the femoral head and the acetabular cup on the contact area and contact stresses between the bearing surfaces. It is shown that microseparation leads to edge contact and elevated contact stresses, and these are mainly dependent on the magnitude of separation, the radial clearance between the femoral head and the acetabular cup, and the cup inclination angle. For a small microseparation distance (less than the diametrical clearance), the contact occurs within the acetabular cup, and consequently an excellent agreement of the predicted contact pressure distribution is obtained between the present three-dimensional anatomical model and a simple two-dimensional axisymmetric model adopted in a previous study [5]. However, as microsegregation is increased further, edge contact between the superolateral rim and the femoral head occurs. Consequently, the predicted contact pressure is significantly increased. The corresponding contact area resembles closely the stripe wear pattern observed on both clinically retrieved and simulator-tested ceramic femoral heads [8, 9, 11]. Furthermore, introducing a fillet radius of 2.5 mm at the mouth of the acetabular cup is shown to reduce the contact stress due to edge contact, but only under relatively large microseparation distances.  相似文献   

6.
Clinical studies indicate that range of motion until prosthetic impingement is important in understanding unexplained failures of hip resurfacings, yet the underlying biomechanical principles have received little attention. This study investigates the mathematical relationships between component design, position, patient bone geometry and range of motion in hip resurfaced prostheses. Variations in range of motion and impingement-free safe-zones for cup position were calculated using an established method of vector analysis that facilitated parametric analysis in a time efficient manner. The alpha angle, defined as the angle between the centreline of the femoral neck and the waist of the femoral head/neck junction, was used to represent the natural femoral neck. Range of motion and impingement-free safe-zones were inversely proportional to the alpha angle and cup inclusion angle. The size of the safe-zone was most sensitive to the alpha angle with a 6 degrees reduction, decreasing the range of cup positions without impingement by 80-100%. Lowering the upper limit of cup inclination from 55 degrees to 45 degrees reduced the range of cup positions that allow impingement-free motion by 47-94%. No common safe-zone was observed for the range of component sizes and positions investigated. This offers an explanation to why clinic studies have failed to associate outcome with standardised positioning criteria.  相似文献   

7.
Effective lubrication performance of metal-on-metal hip implants only requires optimum conformity within the main loaded area, while it is advantageous to increase the clearance in the equatorial region. Such a varying clearance can be achieved by using non-spherical bearing surfaces for either acetabular or femoral components. An elastohydrodynamic lubrication model of a novel metal-on-metal hip prosthesis using a non-spherical femoral bearing surface against a spherical cup was solved under loading and motion conditions specified by ISO standard. A full numerical methodology of considering the geometric variation in the rotating non-spherical head in elastohydrodynamic lubrication solution was presented, which is applicable to all non-spherical head designs. The lubrication performance of a hip prosthesis using a specific non-spherical femoral head, Alpharabola, was analysed and compared with those of spherical bearing surfaces and a non-spherical Alpharabola cup investigated in previous studies. The sensitivity of the lubrication performance to the anteversion angle of the Alpharabola head was also investigated. Results showed that the non-spherical head introduced a large squeeze-film action and also led to a large variation in clearance within the loaded area. With the same equatorial clearance, the lubrication performance of the metal-on-metal hip prosthesis using an Alpharabola head was better than that of the conventional spherical bearings but worse than that of the metal-on-metal hip prosthesis using an Alpharabola cup. The reduction in the lubrication performance caused by the initial anteversion angle of the non-spherical head was small, compared with the improvement resulted from the non-spherical geometry.  相似文献   

8.
9.
The contact mechanics in ceramic-on-ceramic hip implants has been analysed in this study using the finite element method. Only the ideal conditions where the contact occurs within the acetabular cup were considered. It has been shown that the contact pressure distribution and the contact area at the main articulating bearing surfaces depend largely on design parameters such as the radial clearance between the femoral head and the acetabular cup, as well as the thickness of the ceramic insert. For the ceramic-on-ceramic hip implants used in clinics today, with a minimum 5-mm-thick ceramic insert, it has been shown that the radius of the contact area between the femoral head and the acetabular cup is relatively small compared with that of the femoral head and the ceramic insert thickness. Consequently, Hertz contact theory can be used to estimate the contact parameters such as the maximum contact pressure and the contact area.  相似文献   

10.
Finite-element method was employed to study the contact mechanics in metal-on-metal hip resurfacing prostheses, with particular reference to the effects of bone quality, the fixation condition between the acetabular cup and bone, and the clearance between the femoral head and the acetabular cup. Simple finite-element bone models were developed to simulate the contact between the articulating surfaces of the femoral head and the acetabular cup. The stresses within the bone structure were also studied. It was shown that a decrease in the clearance between the acetabular cup and femoral head had the largest effect on reducing the predicted contact-pressure distribution among all the factors considered in this study. It was found that as the clearance was reduced, the influence of the underlying materials, such as bone and cement, became increasingly important. Stress shielding was determined to occur in the bone tissue surrounding the hip resurfacing prosthesis considered in this study. However, the stress-shielding effects predicted were less than those observed in conventional total hip replacements. Both the effects of bone quality (reduction in elastic modulus) and the fixation condition between the cup and the bone were found to have a negligible effect on the predicted contact mechanics at the bearing surface. The loading was found to have a relatively small effect on the predicted maximum contact pressure at the bearing surface; this was attributed to an increase in contact area as the load was increased.  相似文献   

11.
Fluoroscopy-based navigation system in spine surgery   总被引:4,自引:0,他引:4  
The variability in width, height, and spatial orientation of a spinal pedicle makes pedicle screw insertion a delicate operation. The aim of the current paper is to describe a computer-assisted surgical navigation system based on fluoroscopic X-ray image calibration and three-dimensional optical localizers in order to reduce radiation exposure while increasing accuracy and reliability of the surgical procedure for pedicle screw insertion. Instrumentation using transpedicular screw fixation was performed: in a first group, a conventional surgical procedure was carried out with 26 patients (138 screws); in a second group, a navigated surgical procedure (virtual fluoroscopy) was performed with 26 patients (140 screws). Evaluation of screw placement in every case was done by using plain X-rays and post-operative computer tomography scan. A 5 per cent cortex penetration (7 of 140 pedicle screws) occurred for the computer-assisted group. A 13 per cent penetration (18 of 138 pedicle screws) occurred for the non computer-assisted group. The radiation running time for each vertebra level (two screws) reached 3.5 s on average in the computer-assisted group and 11.5 s on average in the non computer-assisted group. The operative time for two screws on the same vertebra level reaches 10 min on average in the non computer-assisted group and 11.9 min on average in the computer-assisted group. The fluoroscopy-based (two-dimensional) navigation system for pedicle screw insertion is a safe and reliable procedure for surgery in the lower thoracic and lumbar spine.  相似文献   

12.
重力辅助惯性导航是当前水下潜航器导航定位研究的热点和前沿问题,有望成为下一代水下高精度导航系统发展的重要方向。首先,介绍了水下重力信息对于校正惯导系统误差的重要性,阐述了水下重力辅助惯性导航的基本原理与技术内涵;然后,从无图匹配、有图匹配等不同发展阶段,总结了基于传统相对重力仪的水下重力辅助导航的研究现状及发展趋势;进一步分析了下一代水下自主导航系统对高精度绝对重力测量技术的需求,梳理并讨论了基于原子干涉重力测量技术的最新发展及应用状况,展望了原子干涉重力测量技术在水下惯性导航领域的应用前景并总结了仍需解决的关键技术;最后,给出了我国重力辅助导航研究存在的不足及发展建议。  相似文献   

13.
A custom-made hip is essential for the initial stability and longevity which correspond to an optimal stress distribution, since a standard hip cannot always satisfy every patient's need. In order to find out the designing principles of a custom-made hip, a patient's personal features on which the design was based were acquired. In this study, an integrated finite element model of the hip (including ilium, acetabular cup, femoral head, femoral stem, and femur) was created based on the computed tomography (CT) images of this patient. A series model with different stem length, cross-section, and collodiaphyseal angle were analysed under both static and quasi-static loading conditions. Comparing the stress distribution on each part of the hip prosthesis with that of the natural hip before replacement, the optimal stem structure for this patient was found. In addition, the changes of interspace between acetabular cup and femoral head were measured according to dynamic CT images on the healthy side of this patient during a gait cycle. Results correspond to the trail of the maximum contact stress sites, which were mainly located on the superolateral surface of the acetabular cup. This custom-design method can also be adopted for other patients.  相似文献   

14.
In some designs of hip joint simulator the cost of building a highly complex machine has been offset with the requirement for a large number of test stations. The application of the wear results generated by these machines depends on their ability to reproduce physiological wear rates and processes. In this study a hip joint simulator has been shown to reproduce physiological wear using only one load vector and two degrees of motion with simplified input cycles. The actual path of points on the femoral head relative to the acetabular cup were calculated and compared for physiological and simplified input cycles. The in vitro wear rates were found to be highly dependent on the shape of these paths and similarities could be drawn between the shape of the physiological paths and the simplified elliptical paths.  相似文献   

15.
The interference press fit of a metallic one-piece acetabular cup employed for metal-on-metal hip resurfacing procedures was investigated experimentally under laboratory conditions in the present study, in particular regarding the cup deformation. Tests were carried out in cadavers as well as polyurethane foams of various grades with different elastic moduli to represent different cancellous bone qualities. The cadaver test was used to establish the most suitable configuration of the foam model representing realistic support and geometrical conditions at the pelvis. It was found that a spherical cavity, with two identical areas relieved on opposite sides, was capable of creating a two-point pinching action of the ischeal and ilial columns on the cup as the worst-case scenario. Furthermore, the cup deformation produced from such a two-point loading model with a grade 30 foam was similar to that measured from the cadaver test. Therefore, such a protocol was employed in subsequent experimental tests. For a given size of the outside diameter of the cup of 60 mm, the cup deflection was shown to be dependent largely on the cup wall thickness and the diametral interference between cup and prepared cavity at implantation. For a relatively thin cup with a wall thickness between 2.3 mm (equator) and 4 mm (pole) and with a modest nominal diametral interference of 1 mm, which corresponds to an actual interference of approximately 0.5 mm, the maximum diametral cup deflection (at the rim) was around 60 microm, compared with a diametral clearance of 80-120 microm between the femoral head and the acetabular cup, generally required for fluid-film lubrication and tribological performances. Stiffening of the cup, by both thickening and lateralizing by 1 mm, reduced the cup deformation to between 30 and 50 microm with actual diametral interferences between 0.5 and 1 mm.  相似文献   

16.
Wear of polyethylene and the resulting wear debris-induced osteolysis remains a major cause of long-term failure in artificial hip joints. There is interest in understanding engineering and clinical conditions that influence wear rates. Fluoroscopic studies have shown separation of the head and the cup during the swing phase of walking due to joint laxity. In ceramic-on-ceramic hips, joint laxity and microseparation, which leads to contact of the head on the superior rim of the cup, has led to localized damage and increased wear in vivo and in vitro. The aim of this study was to investigate the influence of joint laxity and microseparation on the wear of ceramic on polyethylene artificial hip joints in an in vitro simulator. Microseparation during the swing phase of the walking cycle produced contact of the ceramic head on the rim of the polyethylene acetabular cup that deformed the softer polyethylene cup. No damage to the alumina ceramic femoral head was found. Under standard simulator conditions the volume change of the moderately crosslinked polyethylene cups was 25.6 +/- 5.3 mm3/million cycles and this reduced to 5.6 +/- 4.2 mm3/million cycles under microseparation conditions. Testing under microseparation conditions caused the rim of the polyethylene cup to deform locally, possibly due to creep, and the volume change of the polyethylene cup when the head relocated was substantially reduced, possibly due to improved lubrication. Joint laxity may be caused by poor soft tissue tension or migration and subsidence of components. In ceramic-on-polyethylene acetabular cups wear was decreased with a small degree of joint laxity, while in contrast in hard-on-hard alumina bearings, microseparation accelerated wear. These findings may have significant implications for the choice of fixation systems to be used for different types of bearing couples.  相似文献   

17.
An elastohydrodynamic lubrication (EHL) analysis was carried out in this study for a typical McKee-Farrar metal-on-metal hip prosthesis under a simple steady state rotation. The finite element method was used initially to investigate the effect of the cement and bone on the predicted contact pressure distribution between the two articulating surfaces under dry conditions, and subsequently to determine the elastic deformation of both the femoral and the acetabular components required for the lubrication analysis. Both Reynolds equation and the elasticity equation were coupled and solved numerically using the finite difference method. Important features in reducing contact stresses and promoting fluid-film lubrication associated with the McKee-Farrar metal-on-metal hip implant were identified as the large femoral head and the thin acetabular cup. For the typical McKee-Farrar metal-on-metal hip prosthesis considered under typical walking conditions, an increase in the femoral head radius from 14 to 17.4 mm (for a fixed radial clearance of 79 microm) was shown to result in a 25 per cent decrease in the maximum dry contact pressure and a 60 per cent increase in the predicted minimum film thickness. Furthermore, the predicted maximum contact pressure considering both the cement and the bone was found to be decreased by about 80 per cent, while the minimum film thickness was predicted to be increased by 50 per cent. Despite a significant increase in the predicted minimum lubricating film thickness due to the large femoral head and the thin acetabular cup, a mixed lubrication regime was predicted for the McKee-Farrar metal-on-metal hip implant under estimated in vivo steady state walking conditions, depending on the surface roughness of the bearing surfaces. This clearly demonstrated the important influences of the material, design and manufacturing parameters on the tribological performance of these hard-on-hard hip prostheses. Furthermore, in the present contact mechanics analysis, the significant increase in the elasticity due to the relatively thin acetabular cup was not found to cause equatorial contact and gripping of the ball.  相似文献   

18.
This paper presents an analytical model of the cobalt-based alloy-ultra-high molecular weight polyethylene (UHMWPE) wear coupling. Based on a previous model in which the cup wear volume over a gait cycle (WG) was calculated under the simplifying assumption of an ideal rigid coupling, the current version proposes a more realistic wear simulation. All three components of the hip loading force were considered for the contact pressure calculation and all three components of the hip motion were taken into account for the sliding distance calculation. The contact pressure distribution was calculated on the basis of the Hertzian theory for the elastic contact of two bodies with non-conforming geometrical shapes. The wear factor was taken from hip simulator wear tests. The calculated WG is 67 x 10(-6) mm3 for a standard reference patient. The parametric model simulations show that WG increases linearly with the patient weight, femoral head diameter and surface roughness. It increases non-linearly to a maximum and decreases to an asymptotic value with increasing cup/head clearance and with cup isotropic elastic modulus. The cup orientation in the pelvis affects only slightly the total amount of WG whereas it is the dominant factor affecting the shape of the wear distribution. The iso-wear maps show paracentral patterns at low cup inclination angles and marginal patterns at higher inclination angles. The maximum wear depth is supero-posterior when the cup is in neutral alignment and supero-anterior at increasing anteversion angles. Complex patterns with a combination of paracentral and marginal wear were obtained at specific clearance values and cup orientations. The results of the simulations are discussed in relation to the wear distribution measured on the articular surface of 12 UHMWPE components retrieved from failed hip joint prostheses, after a period of in situ functioning.  相似文献   

19.
Studies on retrieved hip prostheses are currently performed in order to assess the wear mechanisms and the overall wear rate of such artificial joints. Several reported studies on the survival of artificial hips have been based on the measurement of the amount of worn material directly on retrieved acetabular cups. The estimation of the change in volume, V, of the cup cavity is particularly difficult in the case of slight wear due to several factors of which the most critical is the lack of information on the unworn geometry of the cup. This paper presents a new measuring technique, which is described in detail and has been applied to estimate the wear of 65 acetabular cups harvested from revised hip arthroplasty. The coordinate data of several points on the articular surface are sampled using a coordinate measuring machine (CMM). The value of V is calculated mathematically from the measurements by using the hypothesis that the actual shape of both slightly worn and highly worn surfaces has a small departure from a truly spherical shape. The wear volume is estimated with reasonable accuracy mainly on those cups showing penetration depths greater than 0.2 mm, corresponding to an amount of wear greater than 100 mm3 for a 32 mm cup. The uncertainty in the results is estimated for each cup. The repeatability of the technique is studied for a case showing very slight wear. The advantages, disadvantages and limitations of the method are presented and discussed.  相似文献   

20.
The study uses idealized two-dimensional finite element models to examine the behaviour of the acetabular construct following revision hip arthroplasty, carried out using the Slooff-Ling impaction grafting technique. The behaviour of bone graft was considered in detail, with non-linear elasticity and non-associated plasticity being adopted. Load was applied to the acetabular construct through a femoral head using smooth sliding surfaces. In particular, four models were subjected to two idealized cyclic load cases to investigate the effect of acetabular cup size on the short-term stability of the acetabular construct. The study suggests that benefits may be gained by using the largest practical size of acetabular cup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号