共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fuzzy and Recurrent Neural Network Motion Control among Dynamic Obstacles for Robot Manipulators 总被引:1,自引:0,他引:1
An integration of fuzzy controller and modified Elman neural networks (NN) approximation-based computed-torque controller is proposed for motion control of autonomous manipulators in dynamic and partially known environments containing moving obstacles. The fuzzy controller is based on artificial potential fields using analytic harmonic functions, a navigation technique common used in robot control. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The NN weights are tuned on-line, with no off-line learning phase required. The stability of the closed-loop system is guaranteed by the Lyapunov theory. The purpose of the controller, which is designed as a neuro-fuzzy controller, is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems. 相似文献
3.
针对传统系统控制精准度低的问题,提出了基于卷积神经网络的手术机器人控制系统设计。根据基于卷积神经网络的手术机器人控制原理,设计控制系统总体结构,选用PCI插槽上直接内插CAN适配卡作为上位机核心组件,采用C++编写的Lib库和DLL库为驱动程序提供适配卡。通过下位机三个节点,处理相关信号,并进行量程转换和越限判断,确保机器人不会失控。选用80C592微控制器设计关节驱动节点结构,以高速工作方式向控制器提供向总线的差动发送和接受能力,避免外界干扰。设计基于视觉的持镜臂,为手术过程提供上下、左右、前后的运动的手术视野。分别采用FN3002力传感器和MPS-M拉线式位移传感器获取相关传感数据,采用卷积神经网络深度学习方法,设计持镜臂运动控制步骤,采用VC++6.0工具,控制软件程序,避免抖动或者误操作主手现象的出现。由实验结果可知,该系统持镜臂轨迹规划与期望轨迹一致,简化了控制系统的复杂性。 相似文献
4.
5.
提出一种基于动态递归神经网络的自适应PID控制方案,该控制系统由神经网络辨识器和神经网络控制器组成。辨识器采用单隐层的动态递归神经网络,网络结构为2-4-1;辨识算法为动态BP算法;控制器采用两层线性结构的神经网络,输入为系统偏差及其一阶、二阶微分,因此具有增量型PID控制结构。应用该控制系统对一非线性时变系统进行仿真研究,仿真结果表明该控制方案不仅具有良好的跟踪特性,而且对系统参数变化具有较强的鲁棒性。 相似文献
6.
针对传感器受温度影响的复杂非线性输入输出特性,利用对角递归神经网络(DRNN)建模,并实现了温度补偿和非线性校正。对于权值的训练采用LM算法,克服了BP算法收敛慢的缺陷,使其在保证收敛的前提下,提高了收敛速度。实验表明:应用DRNN对传感器建模是一种行之有效的方法。 相似文献
7.
This paper shows the results obtained in controlling a mobile robot by means of local recurrent neural networks based on a radial basis function (RBF) type architecture. The model used has a Finite Impulse Response (FIR) filter feeding back each neuron's output to its own input, while using another FIR filter as a synaptic connection. The network parameters (coefficients of both filters) are adjusted by means of the gradient descent technique, thus obtaining the stability conditions of the process. As a practical application the system has been successfully used for controlling a wheelchair, using an architecture made up by a neurocontroller and a neuroidentifier. The role of the latter, connected up in parallel with the wheelchair, is to propagate the control error to the neurocontroller, thus cutting down the control error in each working cycle. 相似文献
8.
9.
在控制力矩受限情况下,为实现具有模型不确定性自由漂浮空间机器人的轨迹跟踪控制,文章设计了一种新的神经网络自适应控制策略;首先,用双曲函数对控制力矩输入进行限制;其次,设计一种神经网络自适应控制律,对输入力矩受限条件下的非线性系统模型进行在线逼近,同时,利用鲁棒项对神经网络逼近误差和外界干扰进行消除;最后,根据李雅普诺夫理论,证明了所设计控制策略能够使自由漂浮空间机器人系统渐进稳定;仿真实验表明,该控制策略在无需建立复杂系统模型的情况下,便能够对控制力矩进行有效限制,从而使自由漂浮空间机器人在控制力矩受限情况下得到较好的控制. 相似文献
10.
In this paper, the application of neural networks and neurofuzzy systems to the control of robotic manipulators is examined. Two main control structures are presented in a comparative manner. The first is a Counter Propagation Network-based Fuzzy Controller (CPN-FC) which is able to self-organize and correct on-line its rule base. The self-tuning capability of the fuzzy logic controller is attained by taking advantage of the structural equivalence between the fuzzy logic controller and a counterpropagation network. The second control structure is a more familiar neural adaptive controller based on a feedforward (MLP) network. The neural controller learns the inverse dynamics of the robot joints, and gradually eliminates the model uncertainties and disturbances. Both schemes cooperate with the computed torque control algorithm, and in that way the reduction of their complexity is achieved. The ability of adaptive fuzzy systems to compete with neural networks in difficult control problems is demonstrated. A sufficient set of numerical results is included. 相似文献
11.
12.
This paper presents a pattern discrimination method for electromyogram (EMG) signals for application in the field of prosthetic control. The method uses a novel recurrent neural network based on the hidden Markov model. This network includes recurrent connections, which enable modeling time series, such as EMG signals. Weight coefficients in the network can be learned using a well-known back-propagation through time algorithm. Pattern discrimination experiments were conducted to demonstrate the feasibility and performance of the proposed method. We were able to successfully discriminate forearm motions using the EMG signals, and achieved considerably high discrimination performance compared with other discrimination methods. 相似文献
13.
基于回归神经网络自适应快速BP算法 总被引:3,自引:0,他引:3
动态递归网络Elman网络结构简单,运算量少,适合于实时系统辨识。以Elman网络结构推导了在线学习算法。针对于传统BP算法会产生局部收敛和收敛速度慢等缺点,提出了一种改进的自适应BP算法,运用到回归神经网络,提高了在线学习的速度与收敛速度,仿真实验表明了此算法的有效性和快速性。 相似文献
14.
15.
直接自适应动态递归模糊神经网络控制及其应用 总被引:1,自引:0,他引:1
针对某些仿射非线性系统中各状态变量间呈微分关系的特点,本文提出仅取某些可测状态变量
作为动态递归模糊神经网络(dynamic recurrent fuzzy neural network, DRFNN) 的输入,而由DRFNN 的反馈矩阵
描述系统内部动态关系的直接自适应DRFNN 控制算法,克服了将系统所有变量作为输入的传统模糊神经网
络(traditioanl fuzzy neural network, TFNN) 因某些不可测状态变量所导致的不可实现问题.在电液伺服系统中的
应用结果表明:直接自适应DRFNN 控制算法相对于TFNN 控制算法对系统稳态特性的改善具有较大的优越
性. 相似文献
16.
17.
漂浮基双臂空间机器人系统的模糊神经网络自学习控制 总被引:7,自引:0,他引:7
讨论了载体位置、姿态均不受控制的情况下自由漂浮双臂空间机器人系统的高斯基模糊神经网络自
学习控制问题.此类空间机器人系统严格遵守动量守恒和角动量守恒,所以其动力学方程表现出强烈的非线性性
质.将神经网络与模糊控制相结合,即利用神经网络进行模糊推理, 可使模糊控制具有自学习能力.在此基础上,
设计了双臂空间机器人系统关节空间的高斯基模糊神经网络自学习控制方案.系统的数值仿真证实了该方法的有
效性. 相似文献
18.
A recurrent neural network is introduced for the N-stage optimal control problem. The new neural network is based on a reformulation of the original optimal control problem and the gradient method. The simulation results on two examples indicate that the new neural network is quite effective. 相似文献
19.
In this paper, a recurrent neural network (RNN) control scheme is proposed for a biped robot trajectory tracking system. An
adaptive online training algorithm is optimized to improve the transient response of the network via so-called conic sector
theorem. Furthermore, L
2-stability of weight estimation error of RNN is guaranteed such that the robustness of the controller is ensured in the presence
of uncertainties. In consideration of practical applications, the algorithm is developed in the discrete-time domain. Simulations
for a seven-link robot model are presented to justify the advantage of the proposed approach. We give comparisons between
the standard PD control and the proposed RNN compensation method. 相似文献
20.
采用高斯函数作为模糊隶属函数,将模糊控制与神经网络相结合。利用神经网络实现模糊推理,运用了一种模糊高斯基函数神经网络,并用于两关节机器人的轨迹跟踪控制。仿真结果表明,该网络对机器人轨迹跟踪控制具有很好的效果,是一种行之有效的控制方法。 相似文献