首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents the preparation process of porous indium oxide (In2O3) films using a novel deposition technique, i.e., electrostatic spray deposition (ESD). The films were deposited on platinum-coated alumina substrates using as precursor solution indium chloride in ethanol and acetic acid. The films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The nanocrystalline structure of the films was evidenced by TEM and also by XRD studies. The Raman spectroscopy and XRD measurements revealed the cubic phase of In2O3 films. Considering the obtained results, we conclude that the ESD technique is an efficient, cheap and successful method for the preparation of porous indium oxide films.  相似文献   

2.
a-Axis- and c-axis-oriented YBa2Cu3O7–δ (YBCO) films were grown on (100) SrTiO3 substrate by laser chemical vapour deposition (laser CVD). The effect of lattice mismatch between films and substrates on in-plane and out-of-plane crystallinity and critical temperature (TC) was investigated. The preferred orientation changed from a-axis to c-axis as the deposition temperature increased from 928 to 1049 K. The c-axis-oriented YBCO showed a minimum of full width at half maximum of 0.5° for the ω-scan and 1.0° for the φ-scan. A smaller mismatch between YBCO films and substrates led a higher crystallinity for in-plane and out-of-plane epitaxial growths. A high TC of 90 K was obtained for the c-axis-oriented YBCO films. The deposition rate of the YBCO films was 58–101 μm h−1, approximately 60–1000 times higher than that of conventional CVD.  相似文献   

3.
Y. Yu 《Electrochimica acta》2006,51(16):3292-3296
With a mixture of a SiO2 sol and a solution of lithium and cobalt acetates as the precursor, nano-SiO2 modified LiCoO2 films were fabricated by the electrostatic spray deposition (ESD) technique. The SiO2 content of these films was 0, 5, 10, 15 and 20 wt%, respectively. Their structure and electrochemical properties were characterized by means of X-ray diffraction, scanning electron microscopy, galvanostatic cell cycling, AC impedance spectroscopy and cyclic voltammetry. Li2CoSiO4 was found formed in the SiO2-containing films. The film with 15 wt% SiO2 shows the best cycling stability with the capacity of 130 mAh/g in the voltage range between 2.7 and 4.3 V at the current density of 0.1 mA/cm2. Due to its resulted small cell impedance, it has excellent rate capability. A LiCoO2 (shell)/SiO2 (core) structure model is proposed to explain the improved properties of these films.  相似文献   

4.
In this paper, La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) and Ni impregnated porous yttria-stabilized zirconia (YSZ) anodes have been fabricated in two different ways. The testing results demonstrated the excellent performance of the anode made by infiltrating a mixture of LSCrM and Ni(NO3)2 solutions into porous YSZ matrix. After reduction of the anode with hydrogen, an inner nano-network structure with mixed ionic-electronic conducting path has been formed within and between these added particles. A single cell with the anode at 800 °C exhibited the maximum power densities of 1151 and 704 mW cm−2 when dry H2 and CH4 were used as the fuels, respectively; under the same conditions, the cell performances for LSCrM and Ni impregnated YSZ anode separately were 810 and 508 mW cm−2. A cavity model was proposed to simulate the impregnating process and the loading was calculated. No carbon deposition was detected in the anode, even with the presence of Ni, after operation in dry CH4 for about 6 h under open-circuit condition.  相似文献   

5.
Bi-doped antimony selenide (Sb2−xBixSe3) thin films have been prepared by potentiostatical electrodeposition and post annealing treatment. Cyclic voltammetry (CV) was used to investigate the electrochemical behaviors of electrodeposition. The suitable deposition potential for film preparation was determined to be about −0.40 V vs. SCE combining with CV, energy dispersive X-ray spectroscopy (EDS), environmental scanning electron microscope (ESEM) studies. After annealing, film shows improved crystallinity and a basic orthorhombic Sb2Se3 structure but having a larger d-spacing due to the substitution of Bi for Sb in Sb2Se3 lattice. The annealed film exhibits an absorption coefficient of larger than 105 cm−1 in the visible region, an direct optical band gap of 1.12 ± 0.01 eV, the n-type conductivity, an carrier concentration of 1.1 × 1019 cm−3 and an flat band potential of −0.40 ± 0.03 V vs. SCE.  相似文献   

6.
Bi-layer La0.5Sr0.5CoO3−δ (LSCO) cathodes are processed by a hybrid method that combines a seed layer prepared by a pulsed laser deposition (PLD) technique and a conventional cathode layer (∼7 μm in thickness) by a screen printing method. By inserting the PLD seed layer with the thickness of ∼500 nm or less, robust cathode films with desired microstructure and excellent adhesion properties with the underlying electrolyte layer, are successfully fabricated. The area specific resistance (ASR) of the hybrid cathode layers decreases about 5 times compared with that of the single layer cathode films prepared by the conventional screen printing method. The hybrid approach provides a cost-effective way to fabricate thick cathode films with significantly enhanced electrochemical properties for solid oxide fuel cells (SOFCs).  相似文献   

7.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

8.
A double-layer composite electrode based on Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 Ω cm2 was reached at 800 °C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm−2 at 700 °C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of ∼100%.  相似文献   

9.
(LaxSr1−x)MnO3 (LSMO) and (LaxSr1−x)FeO3 (LSFO) (x = 0.2–0.4) ceramics prepared by a simple and effective reaction-sintering process were investigated. Without any calcination involved, La2O3 and SrCO3 were mixed with MnO2 (LSMO) or Fe2O3 (LSFO) then pressed and sintered directly. LSMO and LSFO ceramics were obtained after 2 and 4 h sintering at 1350–1400 and 1200–1280 °C, respectively. Grain size decreased as La content increased in LSMO and LSFO ceramics.  相似文献   

10.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

11.
LiNiO2 was synthesized by the combustion method with various excess lithium amount z in Li1 + zNiO2 (z = 0.04, 0.08, 0.10, 0.12, and 0.15). The sample with z = 0.10 has the largest first discharge capacity of 195 mAh/g at 0.1 C rate and voltage range 2.7-4.4 V with the weight ratio of active material:acetylene black:binder = 85:10:5. The LiNiO2 cathodes, in which the excess lithium amount z for the synthesis of LiNiO2 was 0.10, were fabricated with various weight ratios of active material:acetylene black:binder (85:10:5, 85:12:3, and 90:7:3). The cathode with the ratio of active material:acetylene black:binder 85:10:5 has the best electrochemical properties. The variation, with C-rate, of discharge capacity vs. number of cycles curve for the LiNiO2 cathode with the weight ratio of active material:acetylene black:binder = 85:10:5 was investigated. At 0.1 C rate, the LiNiO2 cathode has the largest first discharge capacity, the discharge capacity degradation rate of 0.70 mAh/g/cycle and a discharge capacity at n = 50 of 134 mAh/g.  相似文献   

12.
In this study, a ceria-based composite electrolyte was investigated for intermediate-temperature solid oxide fuel cells (SOFCs) based on SDC-25 wt.% K2CO3. Sodium carbonate co-precipitation process by which SDC powder was adopted and sound cubic fluorite structure was formed after SDC powders were sintered at 750 °C for 3 h. The crystallite size of the particle was 21 nm in diameter as calculated from data obtained through X-ray diffraction. The conductivity of the composite electrolyte proposed in this study was much higher than that of pure SDC at the comparable temperature of 550-700 °C. The transition of the ionic conductivity occurred at 650 °C. Based on this type of composite electrolyte, single cell with the electrolyte thickness of 0.3 mm were fabricated using dry pressing, with nickel oxide adopted as anode and SSC as cathode. The single cell was then tested at 550-700 °C on home-made equipment in this study, using hydrogen/air. The maximum power density and open circuit voltage (OCV) achieved 600 mW cm−2 and 1.05 V at 700 °C, respectively.  相似文献   

13.
An experimental strategy was developed to obtain transparent Si-Al-Ti-Ni-Mo and Si-Zr-Ti-Ni-Mo sols via the sol-gel process. The sol was prepared from Si(OEt)4 (TEOS), Al(OBus)3 (OBus: C2H5CH(CH3)O), Ti(OEt)4 (OEt: OCH2CH3), Zr(OPrn)4 (OPrn: OCH2CH2CH3). In both cases nickel nitrate hexahydrate (Ni(NO3)2 · 6H2O) and ammonium heptamolybdate tetrahydrate ((NH4)6Mo7O24 · 4H2O) were the Ni and Mo sources, respectively. The sols were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Assignments of the simultaneous formation of the Si-O-Al, Si-O-Ti, Si-O-Ni, and Si-O-Zr bonds were done. The sols were polymerized at room temperature (293 K) to obtain gels, and these were dried at 423 K and calcined at 573, 853 and 893 K in air. The characterization techniques used were small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR). The density of the solids was measured following ASTM method D-4892 and the porosity and surface area were determined by N2 adsorption/desorption isotherms. The corresponding average pore diameters were evaluated using the BJH, HK, and DA methods.  相似文献   

14.
A bi-layered composite cathode of La0.8Sr0.2MnO3 (LSM)-YSZ and LSM-La0.4Ce0.6O1.8 (LDC) was fabricated for anode-supported solid oxide fuel cells with a thin YSZ electrolyte film. The cell with the bi-layered composite cathode displayed better performance than the cell with the corresponding single-layered composite cathode of LSM-LDC or LSM-YSZ. At 650 °C, the cell with the bi-layered composite cathode gave a higher maximum power density than the cells with the single-layered LSM-LDC and LSM-YSZ composite cathodes, by 52% and 175%, respectively. The impedance spectra results show that the thin LSM-YSZ interlayer not only improves the cathode/electrolyte interface but also reduces the polarization resistance of the cathode. The activation energy for oxygen reduction on the bi-layered composite cathode is much smaller than that on LSM-YSZ composite cathode, and it is suggested that the special redox property of Ce4+/Ce3+ in LDC facilitates the oxygen reduction process on the bi-layered composite cathode. The cell with the bi-layered composite cathode operated quite stably during a 100 h run.  相似文献   

15.
Hybrid films composed of poly(luminol) and nanometer-sized clusters of polyoxometalate, SiMo12O404− and PMo12O403− have been prepared in acidic aqueous solutions. These films are stable and electrochemically active, and produced on glassy carbon, platinum, gold and transparent semiconductor tin oxide electrodes. The electrochemical quartz crystal microbalance and cyclic voltammetry were used to study in situ growth of the hybrid poly(luminol)/SiMo12O404− and poly(luminol)/PMo12O403−. Both the poly(luminol)/SiMo12O404− and poly(luminol)/PMo12O403− hybrid films showed four redox couples and the electrochemical properties were compared to SiMo12O404− and PMo12O403−. When transferred to various acidity aqueous solutions, the four redox couples and the formal potentials of two hybride film were observed to be pH-dependent. The electrocatalytic reduction of ClO3, BrO3, IO3, S2O82− and NO2 by a poly(luminol)/PMo12O403− hybrid film in an acidic aqueous solution showed an electrocatalytic reduction activity of IO3 > BrO3 and ClO3. The electrocatalytic oxidation of dopamine and epinephrine by a poly(luminol)/PMo12O403− hybrid film was also investigated.  相似文献   

16.
Anode-supported solid oxide fuel cells (SOFCs) comprising NiO-samarium-doped ceria (SDC) (Sm0.2Ce0.8O1.9) composite anode, thin tri-layer electrolyte, and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF)-La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) composite cathode were fabricated. The thin tri-layer consisting of an 11-μm thick LSGM electrolyte layer and a 12-μm thick La0.4Ce0.6O1.8 (LDC) layer on each side of the LSGM was prepared by centrifugal casting and co-firing technique. The performance of the cells operated with humidified H2 as fuel and ambient air as oxidant showed a maximum power density of 1.23 W cm−2 at 800 °C. A stability test of about 100 h was carried out and some deterioration of output power was observed, while the open circuit voltage (OCV) kept unchanged. Impedance measurements showed that both the electrolyte ohmic resistance and the electrode polarization increased with time and the latter dominated the degradation.  相似文献   

17.
Structural, microstructural and ferroelectric properties of Pb0.90Ca0.10TiO3 (PCT10) thin films deposited using La0.50Sr0.50CoO3 (LSCO) thin films which serve only as a buffer layer were compared with properties of the thin films grown using a platinum-coated silicon substrate. LSCO and PCT10 thin films were grown using the chemical solution deposition method and heat-treated in an oxygen atmosphere at 700 °C and 650 °C in a tube oven, respectively. X-ray diffraction (XRD) and Raman spectroscopy results showed that PCT10 thin films deposited directly on a platinum-coated silicon substrate exhibit a strong tetragonal character while thin films with the LSCO buffer layer displayed a smaller tetragonal character. Surface morphology observations by atomic force microscopy (AFM) revealed that PCT10 thin films with a LSCO buffer layer had a smoother surface and smaller grain size compared with thin films grown on a platinum-coated silicon substrate. Additionally, the capacitance versus voltage curves and hysteresis loop measurement indicated that the degree of polarization decreased for PCT10 thin films on a LSCO buffer layer compared with PCT10 thin films deposited directly on a platinum-coated silicon substrate. This phenomenon can be described as the smaller shift off-center of Ti atoms along the c-direction 〈001〉 inside the TiO6 octahedron unit due to the reduction of lattice parameters. Remnant polarization (Pr) values are about 30 μC/cm2 and 12 μC/cm2 for PCT10/Pt and PCT10/LSCO thin films, respectively. Results showed that the LSCO buffer layer strongly influenced the structural, microstructural and ferroelectric properties of PCT10 thin films.  相似文献   

18.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

19.
Mixed IrO2-SiO2 oxide films were prepared on titanium substrate by the thermo-decomposition of hexachloroiridate (H2IrCl6) and tetraethoxysilane (TEOS) mixed precursors in organic solvents. The solution chemistry and thermal decomposition kinetics of the mixed precursors were investigated by ultra violet/visible (UV/vis) spectroscopy and thermogravimetry (TGA) and differential thermal analysis (DTA), respectively. The physiochemical characterization of the resulting materials was conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is shown from the UV/vis spectra that the electronic absorption intensity of IrCl62− complexes in the precursors decreases in the presence of TEOS, indicating the interaction between these two components. Thermal analysis shows the decomposition reaction of H2IrCl6 is inhibited by TEOS in the low temperature range, but the further oxidation reaction at high temperatures of formed intermediates is independent of the presence of silane component. Physical measurements show a restriction effect of silica on the crystallization and crystal growth processes of IrO2, leading to the formation of finer oxide particles and the porous morphology of the binary oxide films. The porous composite films exhibit high apparent electrocatalytic activity toward the oxygen evolution reaction. In addition, the long-term stability of Ti-supported IrO2 electrodes is found to apparently improve with appropriate amount of SiO2 incorporation, as tested under galvanostatic electrolysis.  相似文献   

20.
The amorphous hydrous manganese oxide (denoted as a-MnOx·nH2O) was anodically deposited from the MnSO4 solutions of various pH values. The capacitive characteristics and stability of this oxide without and with annealing in air for 2 h up to 400 °C were systematically investigated in aqueous electrolytes through means of cyclic voltammetry (CV) and the constant-current charge-discharge method. The redox properties of a-MnOx·nH2O were strongly affected by the electrolytes employed and this oxide exhibited ideally capacitive behavior in 0.1 M Na2SO4 and 0.3 M KCl. The stability of this amorphous hydrous oxide was enhanced by the annealing treatment while its capacitance was gradually decreased with increasing the annealing temperature. The amorphous structure and surface morphologies of a-MnOx·nH2O with annealing at different temperatures were, respectively, examined in terms of the X-ray diffraction (XRD) patterns and scanning electron microscopic (SEM) photographs. The oxidation states of these a-MnOx·nH2O deposits were studied by X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号