首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mullite fibres were synthesised from a mixture of aluminium, aluminium chloride and acidic silica solutions as monophasic salts using a sol–gel technique. The viscosity and rheological behaviour of the mullite precursor sol were examined. Mullite fibres were synthesised using both conventional and microwave sintering techniques. The samples were characterised by X-ray diffraction and scanning electron microscopy. Pure mullite fibres were synthesised by microwave sintering at a relatively low temperature of 1200°C. The grain size of the fibre samples sintered using the microwave technique was finer than that produced by conventional sintering. These results show that microwave sintering is a promising technique for processing mullite fibres.  相似文献   

2.
Low density and high strength ceramic proppant was prepared by sintering high aluminium type low-grade bauxite and high iron type low-grade bauxite at the temperature range from 1300℃ to 1360℃. The phase composition and micromorphology of ceramic proppant were, respectively, characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The bulk density, apparent density, and breakage ratio of ceramic proppant were tested using standard methods. The results show that mullite crystal and corundum crystal are fully developed, the spatial network structure of rod-shaped mullite is formed, and corundum crystal is evenly distributed in the sample when the sintering temperature is 1340℃. At this temperature, the bulk density of the sample is 1.42 g/cm3, the apparent density is 2.67 g/cm3, and the breakage ratio is 5.1% under the closure pressure of 52 MPa. Then, the growth mechanism of mullite crystal in ceramic proppant was explored. The results reveal that the mullite crystal in ceramic proppant conforms to the layer growth theory. The secondary crystal nucleus is formed in the growth process and shows a step growth mechanism. With the increase in sintering temperature, the preferred orientation growth of mullite crystal finally forms needle-like morphology.  相似文献   

3.
《应用陶瓷进展》2013,112(3):99-102
Abstract

The applicability of electrophoretic deposition (EPD) for the fabrication of single layer and multilayer ceramic coatings on dense ceramic composite materials has been examined. Al2O3/Y-tetragonal zirconia polycrystal (TZP) functionally graded composites of tubular shape were successfully coated with a two layer coating comprising porous alumina and dense reaction bonded mullite layers. The dual layer coating structure was designed to eliminate the numerous cracks caused by volume shrinkage during sintering of the individual EPD formed layers. In another example, mullite fibre reinforced mullite matrix composites were coated with a thin layer of nanosized silica particles using EPD. The aim was to achieve a compressive residual stress field in the silica layer on cooling from sintering temperature, in order to increase composite fracture strength and toughness. The EPD technique proved to be a reliable method for rapid preparation of single layer and multilayer ceramic coatings with reproducible thickness and microstructure on ceramic composite substrates.  相似文献   

4.
Mullite has become a strong candidate material for advanced structural and functional ceramics. Much interest has recently focused on sintering aids for mullite. The aim of this study was to evaluate the effect of Y2O3 as a sintering aid in the conventional and microwave sintering of mullite. To accomplish this study, a highly pure industrial mullite was used. Mullite with and without Y2O3 was pressed under a cold isostatic pressure of 200 MPa. Samples were sintered conventionally at 1400, 1450, 1500, 1550 and 1600 °C for 2 h and microwave-sintered for up to 40 min using a large range of power. The microstructure and physical properties of the microwave-sintered samples were compared to those of the conventionally sintered samples. The results showed that Y2O3 improved the densification of mullite bodies in the conventional and microwave sintering processes, but high densifications were achieved in just a few minutes when Y2O3 was used with microwave processing.  相似文献   

5.
Ceramic hollow fiber membranes (CHFMs) are known for their excellent characteristics including high surface area, compact design, and good chemical, thermal, and mechanical stabilities. Despite these interesting attributes, CHFMs are also prone to certain limitations, such as brittleness and high cost that hinder them from being commercialized. To mitigate this drawback, we have developed a high strength, porous ceramic hollow fiber membrane, derived from mullite–kaolinite powder, for efficient oil–wastewater separation. The superhydrophilic, low-cost mullite-based (CHFM) was successfully fabricated through combined phase inversion and sintering techniques. Prior to the fabrication, the as-received mullite–kaolinite was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analyses. Subsequently, operational parameters such as the effect of mullite content, sintering temperature, and air gap were optimized during the fabrication of mullite ceramic hollow fiber membrane. The resulting membranes were systematically characterized and evaluated in terms of morphology, porosity, mechanical strength, water flux, and oil–water separation. Increasing the mullite content, air gap, and sintering temperature enhanced the formation of microvoid structure. It is interesting to note that the mechanical strength of 86 MPa was obtained for the membrane containing 60 wt % of mullite sintered at 1450 °C and an air gap of 5 cm. The membrane induced a stable permeate water flux and oil rejection of mullite CHFM of 182 L/m2?h and 97.1%, respectively. As compared to kaolin ceramic counterparts, this porous mullite ceramic hollow fiber membrane can be used in various water treatment applications, including for the separation of oily wastewater due to its mechanical strength and water flux.  相似文献   

6.
以高岭石质煤矸石为主要原料,V2O5为添加剂,于1400 ℃下制备了莫来石晶须增强的陶粒支撑剂,讨论了V2O5促进莫来石晶须生长机制及其添加量对支撑剂样品性能的影响.结果表明:随着V2O5的加入,支撑剂样品的主晶相莫来石逐渐生长形成莫来石晶须;当V2O5添加量为1wt%时,试样的性能最佳;体积密度1.25 g/cm3,视密度2.69 g/cm3,52 MPa闭合压力下的破碎率5.18%.  相似文献   

7.
工业窑炉蓄热式换热器用莫来石质蜂窝陶瓷的研制   总被引:2,自引:0,他引:2  
以高铝矾土、粘土、莫来石为主要原料 ,添加适量硅线石、红柱石和蓝晶石 ,用挤出成型法制备了蜂窝陶瓷。利用TG -DTA分析了在烧成过程中所发生的物理化学变化 ;X射线衍射分析结果表明 ,材料的主晶相为莫来石。  相似文献   

8.
Silicon carbide particle reinforced mullite composite foams were produced by the polymer replica method using alumina and kaolin to form in situ mullite matrix. Up to 20 wt.% silicon carbide particles (SiCp) were added to aqueous ceramic slurry to explore its effect on the rheological behaviour of ceramic slurries and also properties of as sintered products. By means of solid loading optimisation and sintering enhancement by silicon carbide, mullite based ceramic composite foams of higher strength were obtained. The strength of the as sintered foams was found to depend greatly on the phase composition, relative density of the structures and the amount of SiCp addition. By studying the effect of the additive concentration, on the mechanical properties of the ceramic matrix, it is found that the optimal silicon carbide addition is 20 wt.%.  相似文献   

9.
The aim of this work was to investigate the possibility of applying a conventional ceramic processing route to an amorphous mullite precursor. The main processing parameters necessary for high purity and dense mullite bodies were studied. The effect of thermal pretreatments on the sintering mechanism, density and microstructure of mullite compacts was established.  相似文献   

10.
Commercially available alumina and silica precursors for the preparation of mullite ceramic via colloidal processing and viscous transient sintering have been identified, including fumed nanosize powders and colloidal suspensions. These materials were chosen due to the fact that they can be used in the form of a sol, as mullite matrix precursors, to infiltrate woven fibre preforms using electrophoretic deposition. The sintered density of the mullite matrices sintered for 2 h, at the upper temperature for fabricating SiC-fibre reinforced composites (1300 °C) is only ≈ 90% of theoretical. However, by exploiting a viscous flow densification mechanism, it is envisaged that hot-pressing can be used to produce fully dense mullite matrix composites at the required temperatures. Additionally. using a simple pressureless sintering route, almost fully dense (98% of theoretical density) monolithic mullite has been obtained from the pre-mullite powders. A very homogeneous and fine microstructure was achieved by sintering for 5 h at a temperature of ≈ 1450 °C.  相似文献   

11.
Ceramic shell moulds fabricated by traditional shell-making technology have relatively low strength, and often crack during the casting process due to the low strength. In addition, the traditional shell-making process requires long period and high cost. In this work, qualified mullite ceramic shell moulds with enhanced strength were fabricated by selective laser sintering (SLS) combined with high-temperature sintering process. The effects of SLS process parameters on dimensions were investigated, and process optimization was proposed by orthogonal experiments. The effect of sintering temperature on strength at room temperature and 900?°C were studied. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) analysis suggested that mullitization behavior was influenced by sintering temperature. Furthermore, the content of mullite phase, mullite grain sizes, and mean length-diameter ratio of the mullite grains increased with the sintering temperature. Mechanical testing results showed that the samples sintered at 1610?°C had an excellent compressive strength of 99.01?MPa at room temperature and over 172.02?MPa at 900?°C. These values far exceed those of ceramic shell moulds fabricated by the traditional shell-making process (40.43?MPa).  相似文献   

12.
An optimized recipe for 3D printing of Mullite-based structures was used to investigate the effect of MgO sintering additive on the processing stages and final ceramic properties. To achieve dense 3:2 mullite, ceramic filaments were prepared based on an alumina powder, a methyl silicone resin, EVA elastomeric binder and MgO powder. Using 1 wt% MgO and a dwell time of 5 h at 1600 °C, a dense mullite structure could be obtained from filaments with a diameter of 1.75 mm. Ceramic structures with and without sintering additive were printed in vertical and horizontal direction, to investigate the effect of printing direction on mechanical strength after sintering. Using four-point bending test, it was demonstrated that by using MgO, the printing orientation did not affect the mechanical strength significantly anymore. The low Weibull modulus could be explained by the closed porosity that emerge during the degassing of the preceramic polymer due to cross-linking.  相似文献   

13.
《Ceramics International》2015,41(7):8282-8287
The natural mineral kaolin combined with alumina additives Al(OH)3,α-Al2O3 and AlF3 was used to prepare porous mullite ceramic membrane supports using an in-situ reaction. The effects of composition and sintering temperature on the sintering behavior, pore structure, permeability and microstructure of the resulting porous mullite supports were extensively investigated. The experimental results showed that excess SiO2 in kaolin can be consumed by adding alumina precursors, which resulted in a stiff skeleton of interlinked needle-like mullite crystals in-situ during the sintering. The needle-like mullite crystals touched each other and formed a short network, which acted as a porous skeletal network structure. This network resulted in a highly permeable porous structure. The resulting support is suitable for the preparation of asymmetric ceramic membranes. The densification and pore structure of the support can be effectively adjusted by control of the quantity of alumina precursors in the composition and the sintering temperature. Sintering the subject mullite compositions at 1500 °C for two hours resulted in support structures with an average porosity of 45.9%, an average pore size of 1.3 µm and a penetrating porosity of 35.9%.  相似文献   

14.
《Ceramics International》2017,43(16):13765-13771
Microstructural evolution on sintering of porcelain powder compacts using microwave radiation was compared with that in conventionally sintered samples. Using microwaves sintering temperature was reduced by ~ 75 °C and dwell time from 15 min to 5 min while retaining comparable physical properties i.e. apparent bulk density, water absorption to conventionally sintered porcelain. Porcelain powder absorbed microwave energy above 600 °C due to a rapid increase in its loss tangent. Mullite and glass were used as indicators of the microwave effect: mullite produced using microwaves had a nanofibre morphology with high aspect ratio (~ 32 ± 3:1) believed associated with a vapour-liquid-solid (VLS) formation mechanism not previously reported. Microwaves also produced mullite with different chemistry having ~ 63 mol% alumina content compared to ~ 60 mol% alumina in conventional sintered porcelain. This was likely due to accelerated Al+3 diffusion in mullite under microwave radiation. Liquid glass was observed to form at relatively low temperature (~ 900–1000 °C) using microwaves when compared to conventional sintering which promoted the porcelains ability to absorb them.  相似文献   

15.
The mechanical strength of mullite materials sintered by the conventional route or by microwave was evaluated by diametral compression at room temperature and 1400 °C. Crack patterns and fracture mechanisms were analyzed and the results were discussed in terms of the final microstructures. The conventional and microwave sintered materials showed similar densification degrees and homogeneous microstructures with small equiaxial grains. Independent of the sintering route, the fracture strength did not change as the temperature increased. However, the mechanical strength of microwave sintered mullite was always higher than the conventionally sintered materials. Moreover, in both mullite materials, microcracks produced by the effects of thermal expansion and/or elastic anisotropies during sintering and/or mechanical testing were critical defects. In the early steps, microcracks occurred in transgranular mode. However, upon approaching the critical condition, their propagation was more intergranular until they coalesced and the specimen failed, generally in a triple-cleft fracture.  相似文献   

16.
用凝胶法制备片状莫来石粉及其应用   总被引:1,自引:0,他引:1  
用拟薄水铝石和非晶态SiO_2微粉为原料,用溶胶-凝胶工艺制取了莫来石凝胶。通过干燥、煅烧,制得片状结晶莫来石粉.初步研究了凝胶法莫来石粉在钛酸铝陶瓷和烧结刚玉砖中的应用。实验结果表明,片状莫来石起了促进烧结、降低烧成温度的作用,并使钛酸铝-莫来石复相陶瓷和刚玉砖的强度得到显著提高.  相似文献   

17.
High-toughness mullite ceramics were fabricated through hot-press sintering (HPS) of pyrophyllite and AlOOH, which were wet-milled and well mixed using a planetary ball mill. The impacts of sintering temperatures and contents of AlOOH on mullite phase formation, densification, microstructure and mechanical properties in ceramic materials were investigated through XRD, SEM and mechanical properties determination. The results indicated that high-toughness mullite ceramics could be successfully prepared by HPS at temperatures higher than 1200°C for 120 min. Increasing the sintering temperature from 1000 to 1300°C significantly enhanced the flexural strength and fracture toughness of samples. The highest flexural strength of 297.97±25.32 MPa and fracture toughness of 4.64±0.11 MPa⋅m1/2 were obtained for samples sintered at 1300°C. Further increase of temperature to 1400°C resulted in slight decrease of flexural strength and fracture toughness. Compared with the mullite ceramics prepared only using pyrophyllite as raw material, incorporation of AlOOH into raw material significantly increased the mechanical properties of final mullite ceramics. And stoichiometric AlOOH and pyrophyllite as starting material gave the best performance in fracture toughness. The high-toughness of mullite ceramics were ascribed to the high mullite phase content, fine mullite whiskers and in situ formed, intertwined three-dimensional network structure obtained through HPS at a low temperature of 1300°C.  相似文献   

18.
Fine‐grained mullite nanofibers derived from the diphasic mullite sol were successfully fabricated by electrospinning and subsequent pyrolysis at 1500°C. Polymethylsiloxane and aluminum tri‐sec‐butoxide were selected as the silicon and aluminum source to synthesize the diphasic sol. Results show that the weight loss of mullite precursor fibers in our work was about 60 wt.%, which is similar with that of fibers fabricated using the monophasic sol. This low weight loss was mainly attributed to the high ceramic yield of polymethylsiloxane and low introduced polyvinylpyrrolidone content, which ensures the integrity of fiber morphology during the sintering process. Mullite fibers with 216 nm average diameter were fabricated after sintered at 1500°C and the corresponding grain size was only ~100 nm, much smaller than that in mullite fibers derived from monophasic sols. Therefore, it can be predicated that mullite fibers in this work should possess a higher mechanical strength than those derived from monophasic sols when the sintering temperature was higher than 1400°C and therefore was an ideal starting materials for the fabrication of mullite nanofibrous ceramics used as the high‐temperature thermal insulation materials.  相似文献   

19.
汪宏显 《当代化工》2014,(12):2624-2626
微波烧结法作为一种全新的烧结技术与传统的烧结方法有着很大的不同。介绍了微波烧结的原理及特点,全面综述了微波烧结工艺的研究现状,介绍了微波烧结技术在陶瓷材料的应用,最后展望了微波烧结技术的前景。  相似文献   

20.
金属支撑平板陶瓷膜制备与性能   总被引:2,自引:0,他引:2  
研究金属支撑平板陶瓷膜的制备工艺技术,陶瓷膜的组成、烧成温度、碳含量对材料性能(孔隙率、孔径、强度等)的影响,比较几种材料的陶瓷隔膜碱蚀量与电解实验结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号