首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe2O3 is a promising oxygen carrier for hydrogen production in the chemical-looping process. A set of kinetic studies on reduction with CH4, CO and H2 respectively, oxidation with water and oxygen containing Ar for chemical-looping hydrogen production was conducted. Fe2O3 (20 wt.%)/ZrO2 was prepared by a co-precipitation method. The main variables in the TGA (thermogravimetric analyzer) experiment were temperatures and gas concentrations. The reaction kinetics parameters were estimated based on the experimental data. In the reduction by CH4, CO and H2, the reaction rate changed near FeO. Changes in the reaction rate due to phase transformation were observed at low temperature and low gas concentration during the reduction by CH4, but the phenomenon was not remarkable for the reduction by CO and H2. The reduction rate achieved using CO and H2 was relatively faster than achieved using CH4. The Hancock and Sharp method of comparing the kinetics of isothermal solid-state reactions was applied. A phase boundary controlled model (contacting sphere) was applied to the reduction of Fe2O3 to FeO by CH4, and a different phase boundary controlled model (contacting infinite slab) was fit well to the reduction of FeO to Fe by CH4. The reduction of Fe2O3 to Fe by CO and H2 can be described by the former phase boundary controlled model (contacting sphere). This phase boundary controlled model (contacting sphere) also fit well for the oxidation of Fe to Fe3O4 by water and FeO to Fe2O3 by oxygen containing Ar. These kinetics data could be used to design chemical-looping hydrogen production systems.  相似文献   

2.
Electromagnetic interference shielding effectiveness (EMI SE) of multifunctional Fe3O4/carbon nanofiber composites in the X-band region (8.2–12.4 GHz) is studied. Here, we examine the contributing effects of various parameters such as Fe3O4 content, carbonization temperature and thickness on total shielding efficiency (SEtotal) of different samples. The maximum EMI SE of 67.9 dB is obtained for composite of 5 wt.% Fe3O4 (0.7 mm thick) with the dominant shielding by absorption (SEA) of electromagnetic radiation. The enhanced electromagnetic shielding performance of Fe3O4/carbon nanofiber composites is attributed to the increment of both magnetic and dielectric losses due to the incorporation of magnetite nanofiller (Fe3O4) in electrically conducting carbon nanofiber matrix as well as the specific nanofibrous structure of carbon nanofiber mats, which forms a higher aspect ratio structure with randomly aligned nanofibers. Furthermore, we prove that the addition of elastomeric polydimethylsiloxane (PDMS) as a coating for carbon nanofiber composite strengthens the composite structure without interfering with its electromagnetic shielding efficiency.  相似文献   

3.
Diopside and Fe2O3 were introduced in alumina matrix ceramic materials. Large-scale fine structural alumina matrix ceramic guideway materials were fabricated by the technology of pressureless sintering, during which liquid phase sintering took place and new phases such as 3Al2O3·2SiO2, CaO·Al2O3·2SiO2 and CaO·6Al2O3 were produced by the chemical reactions taking place among alumina and the additives. The hardness, the fracture toughness and the bending strength of the guideway products were tested. The influences of diopside and Fe2O3 additions were studied by microstructural observations and mechanical properties evaluations. Meanwhile, the expected improvement of mechanical properties compared with pure alumina was indeed observed. The fracture mechanism and porosity of large-scale fine structural alumina matrix ceramic guideway materials were analyzed.  相似文献   

4.
Fe-200 was synthesized through the calcination of iron powder at 200 °C for 30 min in air. On the basis of characterization by X-ray diffraction and X-ray photoelectron spectroscopy, Fe-200 had a core–shell structure, in which the surface layer was mainly composed of Fe2O3 with some FeOOH and FeO, and the core retained metallic iron. The kinetics and mechanism of the interfacial electron transfer on Fe-200 were investigated in detail for the photoassisted degradation of organic pollutants with H2O2. Under deoxygenated conditions in the dark, the generation of hydroxyl radicals in aqueous Fe-200 dispersion verified that galvanic cells existed at the interface of Fe0/iron oxide, indicating the electron transfer from Fe0 to Fe3+. Furthermore, the effects of hydrogen peroxide and different organic pollutants on the interfacial electron transfer were examined by the change rate of the Fe3+ concentration in the solution. The results indicated that hydrogen peroxide provided a driving force in the electron transfer from Fe2+ to Fe3+, while the degradation of organic pollutants increased the electron transfer at the interface of Fe0/iron oxide due to their reaction with OH.  相似文献   

5.
Masoumeh Bayat 《Polymer》2011,52(7):1645-1653
In order to develop multifunctional nanofibers, the electrical conductivity and magnetic properties of Fe3O4/carbon composite nanofibers have been examined. Polyacrylonitrile (PAN) is used as a matrix to produce magnetic composite nanofibers containing different amounts of magnetite (Fe3O4) nanoparticles. Electrospun composite nanofibers were thermally treated to produce electrically conductive and magnetically permeable composite carbon nanofibers. The composite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, four-point probe and Superconducting Quantum Interference Device (SQUID). Uniform nanofibers were obtained with successful transferring of magnetic properties of Fe3O4 into the as-spun composite nanofibers. The electromagnetic properties were tuned by adjusting the amount of Fe3O4 in the matrix and carbonization process. The electrical conductivity, magnetic moment and also magnetic hysteresis rise up by adding Fe3O4 and increasing carbonization temperature. The high surface area provided by the ultrafine fibrous structures, the flexibility and tuneable electromagnetic properties are expected to enable the expansion of the design options for a wide rage of electronic devices.  相似文献   

6.
In general, the technologically important ferrites nanoparticles, magnetite and maghemite, are converted from cubic to the more stable rhombohedral structure above 500°C‐700°C under air/vacuum/inert atmosphere. Here, we report, the superior thermal stability of polymer capped Fe3O4 (PCIO) nanocluster (synthesized using microwave‐assisted polyol approach) up to 1000°C under vacuum and inert atmosphere. Raman spectra of post annealed PCIO nanoclusters show the Fe3O4 phase with carbon signature due to the decomposition of polymer matrix. The carbon layer seems to act as a thermal shield and increases the activation energy thereby preventing the intrusion of heat, oxygen, volatiles mass into the magnetic core. The presence of carbon layer was further confirmed from the high‐resolution transmission electron microscopic image. After thermal annealing at 1000°C, PCIO nanoclusters showed superparamagnetic behavior with a saturation magnetization of 89 emu/g, close to the bulk saturation magnetization of Fe3O4 phase. In contrast, the uncoated Fe3O4 (UCIO) nanoclusters decompose at 700°C into α‐Fe2O3 and FeO phases under similar annealing conditions. Our findings open up new possibilities of stabilizing nanomaterials for high‐temperature applications.  相似文献   

7.
Flameless combustion of 40% Fe2O3 – 40% RDX – 20% HDI (mix I) and 30% CoCO3 – 15% iron formate – 40% RDX – 15% HDI (mix II) systems was explored by time-resolved X-ray diffraction (TRXRD). In case of mix I, the reaction was found to proceed via the formation of FeO intermediate: Fe2O3 → FeO → Fe3O4. Variation in the extent of iron reduction was associated with dynamic temperature change and a reductant content of the reaction zone. The reduction proceeded as a solid-state reaction, without amorphization of the structure. The process in system II involved the formation of CoO and FeO intermediates. Further reduction – up to metals – takes place behind the combustion front and yields a mixture of nanosized Co, Fe, and Co0.7Fe0.3 particles. Exposure of hot reaction products – nano-sized Co and Fe – to the air leads to their self-ignition and formation of Co3O4 and Fe3O4, respectively.  相似文献   

8.
《Ceramics International》2017,43(17):14756-14762
Magnetite (Fe3O4) powders were synthesized by solution combustion method at different fuel to oxidant ratios (ϕ = 0.5, 0.75, 1 and 1.5) using conventional and microwave ignition. The ignition method and fuel content affected the phase evolution, microstructure and magnetic properties of Fe3O4 powders as characterized by X-ray diffractometry, infrared spectroscopy, N2 adsorption–desorption, electron microscopy and vibrating sample magnetometry techniques. Single phase Fe3O4 powders were only obtained using conventional ignition at ϕ value of 1, while the impurity phases such as α-Fe2O3 and FeO together with Fe3O4 phase were formed by microwave ignition. The bulky microstructure of conventionally combusted powders with specific surface area of 71.5 m2/g was transformed to disintegrated structure (76.5 m2/g) by microwave heating. The microwave combusted powders showed the highest saturation magnetization of 86.5 emu/g at ϕ value of 0.5 and the lower coercivity than that of conventionally combusted powders at all ϕ values, due to their larger particles.  相似文献   

9.
A sol-gel method with ethylene diamine tetraacetic acid and citric acid as co-chelates is employed for the synthesis of P2-type Na2/3Mn1/2Fe1/4Co1/4O2 as cathode material for sodium-ion batteries. Among the various calcination temperatures, the Na2/3Mn1/2Fe1/4Co1/4O2 with a pure P2-type phase calcined at 900 °C demonstrates the best cycle capacity, with a first discharge capacity of 157 mA h g?1 and a capacity retention of 91 mA h g?1 after 100 cycles. For comparison, the classic P2-type Na2/3Mn1/2Fe1/2O2 cathode prepared under the same conditions shows a comparable first discharge capacity of 150 mA h g?1 but poorer cycling stability, with a capacity retention of only 42 mA h g?1 after 100 cycles. Based on X-ray photoelectron spectroscopy, the introduction of cobalt together with sol-gel synthesis solves the severe capacity decay problem of P2-type Na2/3Mn1/2Fe1/2O2 by reducing the content of Mn and slowing down the loss of Mn on the surface of the Na2/3Mn1/2Fe1/4Co1/4O2, as well as by improving the activity of Fe3+ and the stability of Fe4+ in the electrode. This research is the first to demonstrate the origin of the excellent cycle stability of Na2/3Mn1/2Fe1/4Co1/4O2, which may provide a new strategy for the development of electrode materials for use in sodium-ion batteries.  相似文献   

10.
Porous Fe3O4/C microspheres, which were Fe3O4 nanocrystals (~8?nm) embedded in an open nanostructured carbon network, were successfully synthesized via a facile hydrothermal process. The porous Fe3O4/C microspheres possessed many distinct attributes that facilitate efficient broadband electromagnetic wave absorption (EMWA). EMWs were attenuated through multiple reflections and absorption in the 3D interconnected porous structure of the microspheres; these processes collectively improved the interaction between the EMWs and the absorber. Additionally, the carbon network and embedded Fe3O4 nanoparticles caused significant dielectric losses and magnetic losses, respectively, which also enhanced EMWA. The EMWA characteristics of the microspheres could be precisely tuned via changing the carbon content to achieve optimized impedance matching. Porous Fe3O4/C microspheres with a 71.5?wt% carbon content displayed particularly impressive EMWA properties: a maximum reflection loss (RL) value of ??31.75 across broad band frequencies in the range of 7.76–12.88?GHz (RL < ?10?dB) at an absorber thickness of 3.0?mm. These excellent EMWA properties may be attributed to both dielectric loss (carbon) and magnetic loss (Fe3O4). Additionally, the 3D interconnected porous structure of the Fe3O4/C microspheres is especially favorable for impedance matching.  相似文献   

11.
Fe3O4-graphene nanocomposite was prepared by a gas/liquid interface reaction. The structure and morphology of the Fe3O4-graphene nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances were evaluated in coin-type cells. Electrochemical tests show that the Fe3O4-22.7 wt.% graphene nanocomposite exhibits much higher capacity retention with a large reversible specific capacity of 1048 mAh g−1 (99% of the initial reversible specific capacity) at the 90th cycle in comparison with that of the bare Fe3O4 nanoparticles (only 226 mAh g−1 at the 34th cycle). The enhanced cycling performance can be attributed to the facts that the graphene sheets distributed between the Fe3O4 nanoparticles can prevent the aggregation of the Fe3O4 nanoparticles, and the Fe3O4-graphene nanocomposite can provide buffering spaces against the volume changes of Fe3O4 nanoparticles during electrochemical cycling.  相似文献   

12.
Baowen Wang  Ying Zheng  Chuguang Zheng 《Fuel》2011,90(7):2359-2366
The reaction of three Chinese coals with Fe2O3 oxygen carrier (OC) was performed in a thermogravimetric analyzer (TGA), with special focuses on the effects of varying heating rate and coal rank on reactivity. Fourier transform infrared spectroscopy (FTIR) was used to in situ detect the emitted gases from TGA. Field scanning electron microscopy/energy-dispersive X-ray spectrometry (FSEM-EDX) was used to study the morphology and elemental compositions of the reaction residues collected from TGA and the related phase evaluation was further identified by X-ray diffraction (XRD). Through all these experiments, it was found that the pyrolysis of coal samples without Fe2O3 OC under N2 atmosphere underwent the dehydration and the ensuing primary and secondary pyrolysis stages. The increasing heating rate shifted the characteristic temperature (Tm) of the primary pyrolysis to a higher temperature and favored a more rapid generation of volatile matters. When the three coals reacting with Fe2O3 OC, TGA results demonstrated even over 200 °C, the reaction still experienced the partial pyrolysis at the relatively low temperature and the ensuing two reactions of Fe2O3 with the pyrolysis products at the primary and secondary stages. The coal of low rank with high volatile content should be preferred for the full conversion of coal into CO2. Furthermore, the activation energy of Fe2O3 OC reacting with PDS at its primary pyrolysis stage was the largest, more than 70 kJ/mol. Finally, SEM-EDX and further XRD analysis of the residues from the reaction of PDS with Fe2O3 OC indicated the reduced counterpart of Fe2O3 was Fe3O4, and some inert iron compounds such as Fe2SiO4 and FeAl2O4 were also generated, which might deteriorate the reactivity of Fe2O3 OC.  相似文献   

13.
The three-dimensional porous Fe3O4/graphene composite foam as a new kind of absorbing composite with electrical loss and magnetic loss was successfully synthesized by a facile method. Fe3O4 was evenly attached on structure of graphene sheets which overlapped with each other to form three-dimensional porous graphene foam. The results revealed that when the mass ratio of graphene oxide (GO) and Fe3O4 was 1:1, the Fe3O4/graphene composite foam possessed the best absorption properties: the minimum reflection loss was up to ??45.08?dB when the thickness was 2.5?mm and the bandwidth below ??10?dB was 6.7?GHz when the content of the composite foam absorbents was just 8%. The micron-sized three-dimensional porous structure provided more propagation paths, enhancing the energy conversion of incident electromagnetic waves. The addition of Fe3O4 contributed to improving the impedance matching performance and magnetic loss. The three-dimensional porous Fe3O4/graphene composite foam was a kind of high-efficiency wave absorber, providing a new idea for the development of microwave absorbing materials.  相似文献   

14.
Novel composite membranes are successfully developed for adsorption and catalytic degradation of methylene blue (MB) by blending Fe3O4-coated CNTs (Fe3O4@CNTs) nanoparticles in polyethersulfone (PES) and sulfonated polysulfone (SPSf) matrix via nonsolvent-induced phase separation (NIPS) method assisted by magnetic field. Fe3O4@CNTs nanoparticles migrate to the separation layer under the induction of magnetic field, thus Fe3O4@CNTs/PES/SPSf composite membranes prepared under magnetic field exhibit a better dye removal ability compared with that without magnetic field. The MB removal ratio by Fe3O4@CNTs/PES/SPSf composite membrane containing 8 wt% Fe3O4@CNTs (M2−M) can reach up to 99% in 30 min under the conditions of 0.25 g composite membrane, 20 mg/L MB, 0.1 mol/L H2O2, pH = 3 and 80°C. Furthermore, the composite membranes show excellent recycling performance, as the MB removal capacity remains at 99% even after four cycles.  相似文献   

15.
Phase equilibria in the “FeO”-V2O3 system from 1273 to 1808 K and in the range of oxygen partial pressure from 10−15 to 10−4 atm are investigated. High-temperature quenching, XRD, SEM-EDS, and DSC are used to determine the phase relations. Stable regions of (FeO)s.s., (V2O3)s.s., and spinel phases are considerably effected by the oxygen partial pressure, and structural models are proposed as (Fe2+, Fe3+, V2+)1-xO, (V2+, V3+, V4+, Fe3+)2O3+x, and (Fe2+, Fe3+, V3+)(Fe2+, Fe3+, V3+, Va)2O4. Continuous solid solution FeV2O4-Fe3O4 is formed. The nonstoichiometry of FeV2O4 is attributed to the appearance of vanadium vacancies for electroneutrality due to the oxidation of Fe2+. The standard Gibbs energy of formation for FeV2O4 and component activities in FeV2O4-Fe3O4 solid solution at 1623 and 1773 K are derived based on the equilibrium oxygen partial pressure. The cation distribution in FeV2O4 at different temperatures is obtained according to site preference energy.  相似文献   

16.
A three-dimensional (3D) Fe3O4/carbon material functionalized with amino and hydroxyl groups was synthesized by decomposing 2,4,5-trichlorophenol/ferrocene mixture in the presence of ammonia and polyethylene glycol in solvothermal conditions at 250 °C for 30 h by a one-step process. The 3D Fe3O4/carbon materials can be loaded with Pt nanoparticles without adding any reducing agent; Pt-loaded 3D Fe3O4/carbon hybrid materials have superior electrochemical catalytic activity toward methanol oxidation and the oxidation current density on them is nearly triple that on a commercial Pt/C catalyst.  相似文献   

17.
A SrCo0.8Fe0.2O3 impregnated TiO2 membrane (TiO2-SrCo0.8Fe0.2O3 membrane) was successfully prepared using a sol-gel method in combination with a wet impregnation process. The membrane was subjected to a single gas permeance test using oxygen (O2) and nitrogen (N2). The TiO2 membrane was immersed in the SrCo0.8Fe0.2O3 solution, dried and then calcined to affix SrCo0.8Fe0.2O3 into the membrane. The effect of the acid/alkoxide (H+/Ti4+) molar ratio of the TiO2 sol on the TiO2 phase transformation was investigated. The optimal molar ratio was found to be 0.5, which resulted in nanoparticles with a mean size of 5.30 nm after calcination at 400 °C. The effect of calcination temperature on the phase transformation of TiO2 and SrCo0.8Fe0.2O3 was investigated by varying the calcination temperature from 300 to 500 °C. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared (FTIR) analysis confirmed that a calcination temperature of 400 °C was preferable for preparing a TiO2-SrCo0.8Fe0.2O3 membrane with fully crystallized anatase and SrCo0.8Fe0.2O3 phases. The results also showed that polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) were completely removed. Field emission scanning electron microscopy (FESEM) analysis results showed that a crack-free and relatively dense TiO2 membrane (∼0.75 μm thickness) was created with a multiple dip-coating process and calcination at 400 °C. The gas permeation results show that the TiO2 and TiO2-SrCo0.8Fe0.2O3 membranes exhibited high permeances. The TiO2-SrCo0.8Fe0.2O3 membrane developed provided greater O2/N2 selectivity compared to the TiO2 membrane alone.  相似文献   

18.
The manufacturing of pure polyacrylonitrile (PAN) fibers and magnetic PAN/Fe3O4 nanocomposite fibers is explored by an electrospinning process. A uniform, bead-free fiber production process is developed by optimizing electrospinning conditions: polymer concentration, applied electric voltage, feedrate, and distance between needle tip to collector. The experiments demonstrate that slight changes in operating parameters may result in significant variations in the fiber morphology. The fiber formation mechanism for both pure PAN and the Fe3O4 nanoparticles suspended in PAN solutions is explained from the rheologial behavior of the solution. The nanocomposite fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectrophotometer, and X-ray diffraction (XRD). FT-IR and XRD results indicate that the introduction of Fe3O4 nanoparticles into the polymer matrix has a significant effect on the crystallinity of PAN and a strong interaction between PAN and Fe3O4 nanoparticles. The magnetic properties of the nanoparticles in the polymer nanocomposite fibers are different from those of the dried as-received nanoparticles.  相似文献   

19.
Wen-Jing Li 《Electrochimica acta》2010,55(28):8680-8685
The electrochemical properties of nanocomposite Fe2O3-Se thin film prepared by pulsed laser deposition (PLD) method have been investigated by cyclic voltammetry and charge/discharge measurements. A large reversible capacity of nanocomposite Fe2O3-Se thin film was found to be around 650 mAh g−1. A new couple of reduction and oxidation peaks at 1.4 and 1.8 V were observed from cyclic voltammogram for the first time. Our data demonstrated that nanocomposite Fe2O3-Se exhibit larger capacity and better cycle performance than pure Fe2O3. The electrochemical reaction mechanisms of Fe2O3-Se with lithium were examined by X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The reversible conversions reaction of nanosized metal Fe with Li2Se and Li2O formed after initial discharge process into FeSe and Fe2O3 respectively were revealed.  相似文献   

20.
The Fe2O3/Al2O3 catalyst was studied to selectively synthesize mixed alcohols from syngas in a continuously stirred slurry reactor with the oxygenated solvent Polyethylene Glycol-400 (PEG-400). The selectivity of mixed alcohols in the products reached as high as 95 wt.% and the C2+ alcohols (mainly ethanol) was more than 40 wt.% in the total alcohol products at the reaction conditions of 250 °C, 3.0 MPa, H2/CO = 2 and space velocity = 360 ml/gcat h. The hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) measurements of the catalyst confirmed that the FeO phase was responsible for the high selectivity to mixed alcohols in the process. And the oxygenated solvent PEG-400 was also necessary for the selective synthesis of mixed alcohols in the reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号