首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biomorphic silicon/silicon carbide ceramics from birch powder   总被引:1,自引:0,他引:1  
A novel process has been developed for the fabrication of biomorphic silicon/silicon carbide (Si/SiC) ceramics from birch powder. Fine birch powder was hot-pressed to obtain pre-templates, which were subsequently carbonized to acquire carbon templates, and these were then converted into biomorphic Si/SiC ceramics by liquid silicon infiltration at 1550 °C. The prepared ceramics are characterized by homogeneous microstructure, high density, and superior mechanical properties compared to biomorphic Si/SiC ceramics from birch blocks. Their maximum density has been measured as 3.01 g/cm3. The microstructure is similar to that of conventional reaction-bonded silicon carbide. The Vicker's hardness, flexural strength, elastic modulus, and fracture toughness of the biomorphic Si/SiC were 19.6 ± 2.2 GPa, 388 ± 36 MPa, 364 ± 22 GPa, and 3.5 ± 0.3 MPa m1/2, respectively. The outstanding mechanical properties of the biomorphic Si/SiC ceramics are assessed to derive from the improved uniform microstructure of the pre-templates made from birch powder.  相似文献   

2.
Lanthanum tungstate is a promising material to be used as electrolyte in proton conducting fuel cells, or as a mixed proton-electron conducting membrane for hydrogen separation, and its mechanical properties are crucial for these applications. Lanthanum tungstates with a La/W atomic ratio between 4.8 and 6.0 have been investigated at room temperature at micro/nanoindentation range. Lanthanum tungstates exhibit a strain gradient plasticity at the vicinity of the imprints, which implies that the hardness presents an indentation size effect that was corrected using the Nix and Gao approach. The hardness and Young's modulus have therefore been determined to be 8-9 GPa and 130 ± 15 GPa, respectively. The fracture toughness was estimated to be ∼2 MPa m1/2 for LWO56 using the Palqmvist equation. Both hardness and Young's modulus did not present a significant dependence with neither the sintering temperature nor the composition. The different imprints were visualized by Atomic Force Microscopy.  相似文献   

3.
A new non-aqueous gelcasting system of phenolic resin and furfuryl alcohol combined with a curing catalyst was developed for casting of reaction bonded silicon carbide ceramics. This gelling system could be carried out in air, and the surface exfoliation phenomenon that seems inherent to the acrylamide gelcasting system could also be eliminated. Polymerization of the premix solutions and rheological properties of the non-aqueous silicon carbide suspensions were studied. After curing and subsequent pyrolysis of the concentrated silicon carbide suspension, homogenous silicon carbide/carbon green body with a relatively high strength of about 18 MPa could be formed. Dense complex-shaped SiC ceramic parts with flexure strength of 300±20 MPa and fracture toughness of 3.87±0.19 MPa m1/2 can be successfully produced after reaction sintering at 1700 °C for 30 min under vacuum.  相似文献   

4.
The influence of carbon nanotubes (CNTs) addition on basic mechanical, thermal and electrical properties of the multiwall carbon nanotube (MWCNT) reinforced silicon nitride composites has been investigated. Silicon nitride based composites with different amounts (1 or 3 wt%) of carbon nanotubes have been prepared by hot isostatic pressing. The fracture toughness was measured by indentation fracture and indentation strength methods and the thermal shock resistance by indentation method. The hardness values decreased from 16.2 to 10.1 GPa and the fracture toughness slightly decreased by CNTs addition from 6.3 to 5.9 MPa m1/2. The addition of 1 wt% CNTs enhanced the thermal shock resistance of the composite, however by the increased CNTs addition to 3 wt% the thermal shock resistance decreased. The electrical conductivity was significantly improved by CNTs addition (2 S/m in 3% Si3N4/CNT nanocomposite).  相似文献   

5.
Dense silicon carbide (SiC) ceramics were prepared with 0, 10, 30 or 50 wt% WC particles by hot pressing powder mixtures of SiC, WC and oxide additives at 1800 °C for 1 h under a pressure of 40 MPa in an Ar atmosphere. Effects of alumina or SiC erodent particles and the WC content on the erosion performance of sintered SiC–WC composites were assessed. Microstructures of the sintered composites consisted of WC particles distributed in the equi-axed grain structure of SiC. Fracture surfaces showed a mixed mode of fracture, with a large extent of transgranular fracture observed in SiC ceramics prepared with 30 wt% WC. Crack bridging by WC enhanced toughening of the SiC ceramics. A maximum fracture toughness of 6.7 MPa*m1/2 was observed for the SiC ceramics with 50 wt% WC, whereas a high hardness of 26 GPa was obtained for the SiC ceramics with 30 wt% WC. When eroded at normal incidence, two orders of magnitude less erosion occurred when SiC–WC composites were eroded by alumina particles than that eroded by SiC particles. The erosion rate of the composites increased with increasing angle of SiC particle impingement from 30° to 90°, and decreased with WC reinforcement up to 30 wt%. A minimum erosion wear rate of 6.6 mm3/kg was obtained for SiC–30 wt% WC composites. Effects of mechanical properties and microstructure on erosion of the sintered SiC–WC composites are discussed, and the dominant wear mechanisms are also elucidated.  相似文献   

6.
Liquid polycarbosilane (LPCS) derived hard coatings of silicon carbide (SiC) were deposited on Inconel alloy at three different moderately high temperatures by chemical vapour deposition. The deposited films were characterized by X-ray diffractometry and Field emission scanning electron microscopy. Liquid PCS yielded a mixture of α-SiC and β-SiC during decomposition having uniform round-shaped particles of dimension around 200–300 nm without extensive cracking and few discrete shaped particles were also found to form at higher temperature (i.e. 1100 °C and 1200 °C) deposited films. The coated samples showed substantial increment in hardness and fracture toughness as compared to the uncoated sample. The fracture toughness (KIC) values of the deposited films were in the range of 6.7–10.7 MPa(m)1/2. The tribological properties and hardness of the films were also found to vary with deposition temperature. The scratch tracks of the films revealed that brittle failures occurred in all SiC coated substrates.  相似文献   

7.
The unique combination of SiC properties opens the ways for a wide range of SiC-based industrial applications. Dense silicon carbide bodies (3.18±0.01 g/cm3) were obtained by an SPS treatment at 2050 °C for 10 min using a heating rate of 400 °C/min, under an applied pressure of 69 MPa. The microstructure consists of fine, equiaxed grains with an average grain size of 1.29±0.65 μm. TEM analysis showed the presence of nano-size particles at the grain boundaries and at the triple-junctions, formed mainly from the impurities present in the starting silicon carbide powder. The HRTEM examination revealed high angle and clean grain boundaries. The measured static mechanical properties (HV=32 GPa, E=440 GPa, σb=490 MPa and KC 6.8 MPa m0.5) and the Hugoniot Elastic Limit (HEL=18 GPa) are higher than those of hot-pressed silicon carbide samples.  相似文献   

8.
Goswami  Chandramani  Bhat  I. K.  Patnaik  Amar  Singh  Tej  Fekete  Gusztáv 《SILICON》2020,12(5):1237-1245

This study examined the effects of silicon nitride reinforcement on physical, mechanical and wear properties of different ceramic (zirconium oxide, magnesium oxide, chromium oxide and aluminum oxide) containing hip implant composites. The hip implant composites were produced using conventional mixing and spark plasma sintering methods by substituting aluminum oxide (68, 70.5, 73 and 75.5 wt.%) with silicon nitride (0, 2.5, 5 and 7.5 wt.%). Experimental results showed that silicon nitride content had significant effect on the evaluated physical, mechanical and wear properties. The density of the composites found to decrease whereas void content, Young’s modulus, hardness, wear resistance and fracture toughness first decreased (for 2.5 wt.%) and then increased with the increasing amount of silicon nitride content. The maximum hardness, Young’s modulus, wear resistance and fracture toughness values of 28.64 GPa, 280.18 GPa, 0.0076 mm3/million cycles and 11.84 MPa.m1/2, respectively were registered for 2.5 wt.% silicon nitride additions that also had the lowest void content (0.38%).

  相似文献   

9.
In the present work, well-shaped HAp green bodies were obtained by the gel-casting process with 50 vol.% slurry. After drying, the microstructure and pore distribution of the green body were investigated. The density, compressive strength and flexural strength of the green body were 1.621 g/cm3, 32.6 ± 3.2 MPa and 13.8 ± 1.0 MPa, respectively. After pressureless sintering at the range of 1100–1300 °C for 2 h, the relative density of the final product ranges from 71.8 to 97.1% th. The maximum value of flexural strength, elastic modulus, hardness and fracture toughness were 84.6 ± 12.6 MPa, 138 ± 7 GPa, 4.45 ± 0.18 GPa and 0.95 ± 0.13 MPa m1/2, respectively. SEM images show a compact and uniform microstructure; the average grain size was found by using the linear intercept method. XRD and FTIR determined the phase and the radical preserved after sintering.  相似文献   

10.
In this work, boron carbide ceramics were sintered in the temperature range of 1400–1600 °C by spark plasma sintering (SPS). The influence of sintering temperature, heating rate, and holding time on the microstructure, densification process and physical property was studied. The heating rate was found to have greater influence than that of the holding time on the microstructure and the densification of boron carbide. The optimal sintering temperature was 1600 °C under the heating rate higher than 100 °C/min. The relative density, flexural strength, Vickers hardness and fracture toughness of the sample synthesized at 1600 °C were 98.33%, 828 MPa, 31 GPa and 2.66±0.29 MPa m1/2, respectively. The densification mechanism was also investigated.  相似文献   

11.
Three-dimensional carbon fiber reinforced zirconium carbide composite (3D C/ZrC) was fabricated for ultra high temperature applications by precursor infiltration and pyrolysis (PIP) process using the mixture of zirconium butoxide (Zr(OC4H9)4) and divinylbenzene (DVB) as precursor of zirconium carbide. The micro-structural, mechanical and ablative properties of the 3D C/ZrC composite were studied. The flexural strength of the composite was 107.6 MPa, the elastic modulus was 28.8 GPa, and the fracture toughness was 7.03 MPa m1/2. The mass lose rate and linear recession rate of the 3D C/ZrC composite during oxyacetylene torch test was 0.012 g/s and -0.002 mm/s, respectively. The formation of ZrO2 melt on the surface of the composite contributed mainly the excellent ablative property.  相似文献   

12.
Alumina (Al2O3) and alumina-yttria stabilized zirconia (YSZ) composites containing 3 and 5 mass% ceria (CeO2) were prepared by spark plasma sintering (SPS) at temperatures of 1350-1400 °C for 300 s under a pressure of 40 MPa. Densification, microstructure and mechanical properties of the Al2O3 based composites were investigated. Fully dense composites with a relative density of approximately 99% were obtained. The grain growth of alumina was inhibited significantly by the addition of 10 vol% zirconia, and formation of elongated CeAl11O18 grains was observed in the ceria containing composites sintered at 1400 °C. Al2O3-YSZ composites without CeO2 had higher hardness than monolithic Al2O3 sintered body and the hardness of Al2O3-YSZ composites decreased from 20.3 GPa to 18.5 GPa when the content of ZrO2 increased from 10 to 30 vol%. The fracture toughness of Al2O3 increased from 2.8 MPa m1/2 to 5.6 MPa m1/2 with the addition of 10 vol% YSZ, and further addition resulted in higher fracture toughness values. The highest value of fracture toughness, 6.2 MPa m1/2, was achieved with the addition of 30 vol% YSZ.  相似文献   

13.
Spark plasma sintering (SPS) has become a popular technique for the densification of covalent ceramics. The present investigation is focused on the static mechanical properties and dynamic compressive behavior of SPS consolidated boron carbide powder without any sintering additives. Fully dense boron carbide bodies were obtained by a short high temperature SPS treatment. The mechanical properties of the SPS-processed material, namely hardness (32 GPa), Young modulus (470 GPa), fracture toughness KC (3.9–4.9 MPa m0.5), flexural strength (430 MPa) and Hugoniot elastic limit (17–19 GPa) are close or even better than those of hot-pressed boron carbide.  相似文献   

14.
A pressureless sintering process was developed for the densification of zirconium diboride ceramics containing 10–30 vol% silicon carbide particles. Initially, boron carbide was evaluated as a sintering aid. However, the formation of a borosilicate glass led to significant coarsening, which inhibited densification. Based on thermodynamic calculations, a combination of carbon and boron carbide was added, which enabled densification (relative density >98%) by solid-state sintering at temperatures as low as 1950°C. Varying the size of the starting silicon carbide particles allowed the final silicon carbide particle morphology to be controlled from equiaxed to whisker-like. The mechanical properties of sintered ceramics were comparable with hot-pressed materials with Vickers hardness of 22 GPa, elastic modulus of 460 GPa, and fracture toughness of ∼4 MPa·m1/2. Flexure strength was ∼460 MPa, which is at the low end of the range reported for similar materials, due to the relatively large size (∼13 μm long) of the silicon carbide inclusions.  相似文献   

15.
Silicon carbide whisker (SiCw) toughened B4C composites have been prepared by pressureless infiltration of B4C–SiCw–C preforms with molten silicon under vacuum at 1500 °C. The effect of SiCw addition on bulk density, hardness, bending strength, fracture toughness and microstructure of SiCw/B4C composites is discussed. It is revealed that the addition of SiCw improves the fracture toughness of B4C ceramic, but reduces its bending strength at the same time. The maximum fracture toughness for SiCw/B4C composite with 24 wt% SiCw addition is 4.88 MPa m1/2, which is about 9% higher than that of the one without SiCw, but at the same time, the bending strength reduces to the minimum value 243 MPa, reduced by 25%. XRD analysis shows that the phase composition of reaction bonded SiCw/B4C composites is B4C, SiC, Si, and B12 (C, Si, B)3, with no residual C. And the main toughening mechanism of SiCw is whisker pulling up.  相似文献   

16.
WC-40 vol.%Al2O3 composites were prepared by high energy ball milling followed by hot pressing. The tungsten carbide (WC) and commercial alumina (Al2O3) powders composed of amorphous Al2O3, boehmite (AlOOH) and χ-Al2O3 were used as the starting materials. The phase transformation during sintering, the influence of sintering temperature and holding time on the densification, microstructure, Vickers hardness and fracture toughness and the toughening effects of WC-40 vol.%Al2O3 composites were investigated. The results showed that the amorphous Al2O3, AlOOH and χ-Al2O3 were transformed to α-Al2O3 completely during the sintering process. With the increasing sintering temperature and holding time, the relative density increased and both the Vickers hardness and fracture toughness increased initially to the maximum values and then decreased. When the as milled powders were hot pressed at 1540 °C for 90 min, a relative density of 97.98% and a maximum hardness of 18.65 GPa with an excellent fracture toughness of 10.43 MPa m1/2 of WC-40 vol.%Al2O3 composites were obtained.  相似文献   

17.
J.L. Li  G.Z. Bai  J.W. Feng  W. Jiang 《Carbon》2005,43(13):2649-2653
Bulk carbon nanotube samples were prepared by spark plasma sintering. The as-prepared bulk carbon nanotube material exhibited brittle fracture similar to that of common ceramics. Its fracture toughness was around 4.2 MPa m1/2 while flexural strength was 50 MPa due to the weak bonding between carbon nanotubes. Obvious carbon nanotube bridging was found during the development of the crack induced by an indenter, which provides a possibility of carbon nanotube tough material.  相似文献   

18.
Ceramic cutting tools have been developed as a technological alternative to cemented carbides in order to improve cutting speeds and productivity. Al2O3 reinforced with refractory carbides improve fracture toughness and hardness to values appropriate for cutting applications. Al2O3–NbC composites were either pressureless sintered or hot-pressed without sintering additives. NbC contents ranged from 5 to 30 wt%. Particle dispersion limited the grain growth of Al2O3 as a result of the pinning effect. Pressureless sintering resulted in hardness values of approximately 13 GPa and fracture toughness around 3.6 MPa m1/2. Hot-pressing improved both hardness and fracture toughness of the material to 19.7 GPa and 4.5 MPa m1/2, respectively.  相似文献   

19.
Fully dense boron carbide-silicon carbide composites were successfully produced by spark plasma sintering method at 1950 °C under 50 MPa applied pressure. The effect of dry and wet mixing methods on uniformity was observed. Density, elastic modulus, microstructure, Vickers hardness and fracture toughness were evaluated. The results showed that dry mixing did not provide uniformity on composites properties. On the other hand wet mixing provided uniformity in microstructure and consistency in material properties. The hardness of the sample containing 50 wt% B4C was measured to be 30.34 GPa hardness value was found at 50 wt% B4C content sample. The increase in the B4C content of the composites decreased the Young's modulus, shear modulus, bulk modulus and fracture toughness. The highest values were found at 10 wt% B4C sample which were 415 GPa (E), 177 GPa (G), 209 GPa (K), and 2.89 MPa m1/2 fracture toughness (KIc).  相似文献   

20.
《Ceramics International》2017,43(5):4062-4067
The resorcinol-formaldehyde (RF) gel-casting system is employed for the first time to fabricate a hierarchical porous B4C/C preform, which was subsequently used for the fabrication of reaction bonded boron carbide (RBBC) composites via a liquid silicon infiltration process. The effect of the carbon content and carbon structures of this perform on the microstructures and mechanical properties of B4C/C preform and the resultant RBBC composites is reported. The B4C/C preform (16 wt% carbon) exhibit a strength of 34±1 MPa. The obtained RBBC composites shown uniform microstructure is consisted of SiC particles bonded boron carbide scaffold and an interpenetrating residual silicon phase. The Vickers hardness, flexural strength and fracture toughness of the RBBC composites (16 wt% carbon) are 24 GPa, 452 MPa and 4.32 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号