首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.  相似文献   

2.
The miscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is an elliptic equation of the pressure and the other is a parabolic equation of the concentration of one of the fluids. Since the pressure appears in the concentration only through its velocity field, we choose a mixed finite element method to approximate the pressure equation and for the concentration we use the standard Galerkin method. We shall obtain an explicit a posteriori error estimator in L2(L2) for the semi‐discrete scheme applied to the non‐linear coupled system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we developed an a posteriori error analysis of a coupling of finite elements and boundary elements for a fluid–structure interaction problem in two and three dimensions. This problem is governed by the acoustic and the elastodynamic equations in time‐harmonic vibration. Our methods combined integral equations for the exterior fluid and FEMs for the elastic structure. It is well‐known that because of the reduction of the boundary value problem to boundary integral equations, the solution is not unique in general. However, because of superposition of various potentials, we consider a boundary integral equation that is uniquely solvable and avoids the irregular frequencies of the negative Laplacian operator of the interior domain. In this paper, two stable procedures were considered; one is based on the nonsymmetric formulation and the other is based on a symmetric formulation. For both formulations, we derived reliable residual a posteriori error estimates. From the estimators we computed local error indicators that allowed us to develop an adaptive mesh refinement strategy. For the two‐dimensional case we performed an adaptive algorithm on triangles, and for the three‐dimensional case we used hanging nodes on hexahedrons. Numerical experiments underline our theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Methods for a posteriori error estimation for finite element solutions are well established and widely used in engineering practice for linear boundary value problems. In contrast here we are concerned with finite elasticity and error estimation and adaptivity in this context. In the paper a brief outline of continuum theory of finite elasticity is first given. Using the residuals in the equilibrium conditions the discretization error of the finite element solution is estimated both locally and globally. The proposed error estimator is physically interpreted in the energy sense. We then present and discuss the convergence behaviour of the discretization error in uniformly and adaptively refined finite element sequences.  相似文献   

5.
The Galerkin boundary node method (GBNM) is a boundary only meshless method that combines variational formulations of boundary integral equations with the moving least-squares approximations. This paper presents the mathematical derivation of a posteriori error estimates and adaptive refinement procedures for the GBNM for 3D potential problems. Two types of error estimators are developed in detail. One is a perturbation error estimator that is formulated based on the difference between numerical solutions obtained using two successive nodal arrangements. The other is a projection error estimator that is formulated based on the difference between the GBNM solution itself and its L2-orthogonal projection. The reliability and efficiency of both types of error estimators is established. That is, these error estimators are proven to have an upper and a lower bound by the constant multiples of the exact error in the energy norm. A localization technique is introduced to accommodate the non-local property of integral operators for the needed local and computable a posteriori error indicators. Convergence analysis results of corresponding adaptive meshless procedures are also given. Numerical examples with high singularities illustrate the theoretical results and show that the proposed adaptive procedures are simple, effective and efficient.  相似文献   

6.
The article deals with one of inverse problems of elastography: knowing displacement of compressed tissue finds the distribution of Young’s modulus in the investigated specimen. The direct problem is approximated and solved by the finite element method. The inverse problem can be stated in different ways depending on whether the solution to be found is smooth or discontinuous. Tikhonov regularization with appropriate regularizing functionals is applied to solve these problems. In particular, discontinuous Young’s modulus distribution can be found on the class of 2D functions with bounded variation of Hardy–Krause type. It is shown in the paper that a variant of Tikhonov regularization provides for such discontinuous distributions the so-called piecewise uniform convergence of approximate solutions as the error levels of the data vanish. The problem of practical a posteriori estimation of the accuracy for obtained approximate solutions is under consideration as well. A method of such estimation is presented. As illustrations, model inverse problems with smooth and discontinuous solutions are solved along with a posteriori estimations of the accuracy.  相似文献   

7.
Recently, considerable effort has been devoted to the development of the so‐called meshless methods. Meshless methods still require considerable improvement before they equal the prominence of finite elements in computer science and engineering. One of the paths in the evolution of meshless methods has been the development of the element free Galerkin (EFG) method. In the EFG method, it is obviously important that the ‘a posteriori error’ should be approximated. An ‘a posteriori error’ approximation based on the moving least‐squares method is proposed, using the solution, computed from the EFG method. The error approximation procedure proposed in this paper is simple to construct and requires, at most, nearest neighbour information from the EFG solution. The formulation is based on employing different moving least‐squares approximations. Different selection strategies of the moving least‐squares approximations have been used and compared, to obtain optimum values of the parameters involved in the approximation of the error. The performance of the developed approximation of the error is illustrated by analysing different examples for two‐dimensional (2D) potential and elasticity problems, using regular and irregular clouds of points. The implemented procedure of error approximation allows the global energy norm error to be estimated and also provides a good evaluation of local errors. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
An error estimate for the finite element method is presented in this paper. The error is identified as the response to a set of residual forces, and a complementary analysis provides an upper bound estimate of the global energy of the error. The inequality proposed by Babu?ka and Miller1 is then employed to bound the error in stress and displacement at a point. The formula is derived for two-dimensional elasticity, but the procedure is general; and can be applied to three-dimensional and other problems. Numerical experiments using the procedure are carried out and the results are given for the four-node bilinear compatible element and plane stress.  相似文献   

9.
A posteriori error estimates and an adaptive refinement scheme of first‐order least‐squares meshfree method (LSMFM) are presented. The error indicators are readily computed from the residual. For an elliptic problem, the error indicators are further improved by applying the Aubin–Nitsche method. It is demonstrated, through numerical examples, that the error indicators coherently reflect the actual error. In the proposed refinement scheme, Voronoi cells are used for inserting new nodes at appropriate positions. Numerical examples show that the adaptive first‐order LSMFM, which combines the proposed error indicators and nodal refinement scheme, is effectively applied to the localized problems such as the shock formation in fluid dynamics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In part I of this investigation, we proved that the standard a posteriori estimates, based only on local computations, may severely underestimate the exact error for the classes of wave-numbers and the types of meshes employed in engineering analyses. We showed that this is due to the fact that the local estimators do not measure the pollution effect inherent to the FE-solutions of Helmholtz' equation with large wavenumber. Here, we construct a posteriori estimates of the pollution error. We demonstrate that these estimates are reliable and can be used to correct the standard a posteriori error estimates in any patch of elements of interest. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Classical residual type error estimators approximate the error flux around the elements and yield upper bounds of the exact (or reference) error. Lower bounds of the error are also needed in goal oriented adaptivity and for bounds on functional outputs. This work introduces a simple and cheap strategy to recover a lower bound estimate from standard upper bound estimates. This lower bound may also be used to assess the effectivity of the former estimate and to improve it. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
13.
We propose the study of a posteriori error estimates for time‐dependent generalized finite element simulations of heat transfer problems. A residual estimate is shown to provide reliable and practically useful upper bounds for the numerical errors, independent of the heuristically chosen enrichment functions. Two sets of numerical experiments are presented. First, the error estimate is shown to capture the decrease in the error as the number of enrichment functions is increased or the time discretization refined. Second, the estimate is used to predict the behaviour of the error where no exact solution is available. It also reflects the errors incurred in the poorly conditioned systems typically encountered in generalized finite element methods. Finally, we study local error indicators in individual time steps and elements of the mesh. This creates a basis towards the adaptive selection and refinement of the enrichment functions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The present work deals with an a posteriori error estimator for linear finite element analysis, based on a stress recovery procedure called Recovery by Compatibility in Patches. The key idea of this procedure is to recover improved stresses by minimizing the complementary energy over patches of elements. Displacements computed by the finite element analysis are prescribed on the boundary of the patch. Here, a new form of this recovery procedure is presented. Adopting a different patch configuration, centred upon an element instead of a node, allows to drastically simplify the recovery process, thus improving efficiency and making the implementation in finite element codes much easier. The robustness tests demonstrate that the error estimator associated to the new form of the recovery procedure retains the very good properties of the original one, such as superconvergence. The numerical results on two common benchmark problems confirm the effectiveness of the proposed error estimator, which appears to be competitive with those currently available. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
It has been widely observed that fasteners turn loose when subjected to dynamic loads in the form of shock, vibration or transverse cyclic loading. This reduces the preload force of bolt and leads to joint failure. Such failures can be catastrophic in safety critical applications. In this paper, the self-loosening of bolts in curvic coupling is analyzed based on the self-rotation of nut in the cases of cyclic torque loads on discs after the preload of bolts. The three-dimensional finite element model for curvic coupling and threads is established in commercial finite element software ANSYS to study the details of the self-loosening process of bolt. Such processes are characterized by microslip at the curvic, the bolt head and the thread contact surfaces. It is found that due to the application of the cyclic transverse load, the nut rotation can occur for only localized slip without complete slip at the bolt head contact surface and the thread surface. However, the curvic surface always shows complete slip under all external loads. The microslip on all contact surfaces are identified to be the major mechanisms responsible for the self-loosening of a curvic coupling. The results obtained agree quantitatively with the experimental observations.  相似文献   

16.
This paper is the final in a series of three in which we have discussed a finite element post-processing technique. Here we shall deal with the questions of adaptive mesh selection and a posteriori error estimation. Some numerical examples computed by the FEARS program will be used to illustrate the approaches taken.  相似文献   

17.
We show that the issue of a posteriori estimate the errors in the numerical simulation of non‐linear parabolic equations can be reduced to a posteriori estimate the errors in the approximation of an elliptic problem with the right‐hand side depending on known data of the problem and the computed numerical solution. A procedure to obtain local error estimates for the p version of the finite element method by solving small discrete elliptic problems with right‐hand side the residual of the p‐FEM solution is introduced. The boundary conditions are inherited by those of the space of hierarchical bases to which the error estimator belongs. We prove that the error in the numerical solution can be reduced by adding the estimators that behave as a locally defined correction to the computed approximation. When the error being estimated is that of a elliptic problem constant free local lower bounds are obtained. The local error estimation procedure is applied to non‐linear parabolic differential equations in several space dimensions. Some numerical experiments for both the elliptic and the non‐linear parabolic cases are provided. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A simple a-posteriori error estimation for adaptive BEM in elasticity   总被引:2,自引:0,他引:2  
In this paper, the properties of various boundary integral operators are investigated for error estimation in adaptive BEM. It is found that the residual of the hyper-singular boundary integral equation (BIE) can be used for a-posteriori error estimation for different kinds of problems. Based on this result, a new a-posteriori error indicator is proposed which is a measure of the difference of two solutions for boundary stresses in elastic BEM. The first solution is obtained by the conventional boundary stress calculation method, and the second one by use of the regularized hyper-singular BIE for displacement derivative. The latter solution has recently been found to be of high accuracy and can be easily obtained under the most commonly used C 0 continuous elements. This new error indicator is defined by a L 1 norm of the difference between the two solutions under Mises stress sense. Two typical numerical examples have been performed for two-dimensional (2D) elasticity problems and the results show that the proposed error indicator successfully tracks the real numerical errors and effectively leads a h-type mesh refinement procedure.  相似文献   

19.
This paper contains a first systematic analysis of a posteriori estimation for finite element solutions of the Helmholtz equation. In this first part, it is shown that the standard a posteriori estimates, based only on local computations, severely underestimate the exact error for the classes of wave numbers and the types of meshes employed in engineering analysis. This underestimation can be explained by observing that the standard error estimators cannot detect one component of the error, the pollution error, which is very significant at high wave numbers. Here, a rigorous analysis is carried out on a one-dimensional model problem. The analytical results for the residual estimator are illustrated and further investigated by numerical evaluation both for a residual estimator and for the ZZ-estimator based on smoothening. In the second part, reliable a posteriori estimators of the pollution error will be constructed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

20.
We present an hp-version of the finite element / boundary element coupling method to solve the eddy current problem for the time-harmonic Maxwell’s equations. We use H(curl, Ω -conforming vector-valued polynomials to approximate the electric field in the conductor Ω and surface curls of continuous piecewise polynomials on the boundary Γ of Ω to approximate the twisted tangential trace of the magnetic field on Γ. We present both a priori and a posteriori error estimates together with a three-fold hp-adaptive algorithm to compute the fem/bem coupling solution with appropriate distributions of polynomial degrees on suitably refined meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号