首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new meshless method for solving transient elastodynamic boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation (MLS), is proposed in this paper. The LBIE with the MLS is applied to both transient and steady‐state (Laplace transformed) elastodynamics. Applying the MLS approximation for spatially dependent terms in the first approach, the LBIEs are transformed into a system of ordinary differential equations for nodal unknowns. This system of ordinary differential equations is solved by the Houbolt finite difference scheme. In the second formulation, the time variable is eliminated by using the Laplace transformation. Unknown Laplace transforms of displacements and traction vectors are computed from the LBIEs with the MLS approximation. The time‐dependent values are obtained by the Durbin inversion technique. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The potential problem is one of the most important partial differential equations in engineering mathematics. A potential problem is a function that satisfies a given partial differential equation and particular boundary conditions. It is independent of time and involves only space coordinates, as in Poisson’s equation or the Laplace equation with Dirichlet, Neumann, or mixed conditions. When potential problems are very complex, both in their field variable variation and boundary conditions, they usually cannot be solved by analytical solutions. The element-free Galerkin (EFG) method is a promising method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by employing improved moving least-squares (IMLS) approximation, we derive the formulas for an improved element-free Galerkin (IEFG) method for three-dimensional potential problems. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed.  相似文献   

3.
The meshless local Petrov–Galerkin (MLPG) method is used to solve stationary and transient heat conduction inverse problems in 2-D and 3-D axisymmetric bodies. A 3-D axisymmetric body is generated by rotating a cross section around an axis of symmetry. Axial symmetry of geometry and boundary conditions reduce the original 3-D boundary value problem to a 2-D problem. The analyzed domain is covered by small circular subdomains surrounding nodes randomly spread over the analyzed domain. A unit step function is chosen as test function in deriving the local integral equations (LIEs) on the boundaries of the chosen subdomains. The time integration schemes are formulated based on the Laplace transform technique and the time difference approach, respectively. The local integral equations are non-singular and take a very simple form. Spatial variation of the temperature and heat flux (or of their Laplace transforms) at discrete time instants are approximated on the local boundary and in the interior of the subdomain by means of the moving least-squares (MLS) method. Singular value decomposition (SVD) is applied to solve the ill-conditioned linear system of algebraic equations obtained from the LIE after MLS approximation. The Stehfest algorithm is applied for the numerical Laplace inversion, in order to retrieve the time-dependent solutions.  相似文献   

4.
This paper applies the boundary face method (BFM) to solve transient heat conduction problems for the first time. Rather than using a transformation scheme, a direct solution of the boundary integral equation (BIE) with time domain fundamental solution is performed in this application. To avoid the domain integrals, the boundary integral equation is solved by the time stepping convolution method. For problems on structures that contain a large number of open-ended tubular shaped cavities in small diameters, a curvilinear tube element is employed to approximate the variables on the cavity surface. Furthermore, to perform integration and boundary variable approximation on the end faces that are intersected by the tubular cavity, a triangular element with negative part is adopted. With the two types of specified elements, the BFM is implemented to solve transient heat conduction problems on structures with open-ended tubular shaped cavities of small size which are usually inconvenience in finite element implementations. Three numerical examples on different structures are presented to illustrate the validity and efficiency of the method.  相似文献   

5.
Advanced computational method for transient heat conduction analysis in continuously nonhomogeneous functionally graded materials (FGM) is proposed. The method is based on the local boundary integral equations with moving least square approximation of the temperature and heat flux. The initial-boundary value problem is solved by the Laplace transform technique. Both Papoulis and Stehfest algorithms are applied for the numerical Laplace inversion to obtain the time-dependent solutions. Numerical results are presented for a finite strip and a hollow cylinder with an exponential spatial variation of material parameters.  相似文献   

6.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper a truly meshless method based on the integral form of energy equation is presented to study the steady-state heat conduction in the anisotropic and heterogeneous materials. The presented meshless method is based on the satisfaction of the integral form of energy balance equation for each sub-particle (sub-domain) inside the material. Moving least square (MLS) approximation is used for approximation of the field variable over the randomly located nodes inside the domain. In the absence of heat generation, the domain integration is eliminated from the formulation of presented method and the computational efforts are reduced substantially with respect to the conventional MLPG method. A direct method is presented for treatment of material discontinuity at the heterogeneous material in the presented meshless method. As a practical problem the heat conduction in fibrous composite material is studied and the steady-state heat conduction in unidirectional fiber–matrix composites is investigated. The solution domain includes a small area of the composite system called representative volume element (RVE). Comparison of numerical results shows that the presented meshless method is simple, effective, accurate and less costly method for micromechanical analysis of heat conduction in heterogeneous materials.  相似文献   

8.
The meshless local Petrov–Galerkin (MLPG) method is used to solve the inverse fracture problems in two-dimensional (2D) piezoelectric body. Electrical boundary conditions on the crack surfaces are not specified due to unknown dielectric permittivity of the medium inside the crack. Both stationary and transient dynamic boundary conditions are considered here. The analyzed domain is covered by small circular subdomains surrounding nodes spread randomly over the analyzed domain. A unit step function is chosen as test function in deriving the local integral equations (LIE) on the boundaries of the chosen subdomains. The Laplace-transform technique is applied to eliminate the time variation in the governing equation. The local integral equations are nonsingular and take a very simple form. The spatial variation of the Laplace transforms of displacements and electrical potential are approximated on the local boundary and in the interior of the subdomain by means of the moving least-squares (MLS) method. The singular value decomposition (SVD) is applied to solve the ill-conditioned linear system of algebraic equations obtained from the LIE after MLS approximation. The Stehfest algorithm is applied for the numerical Laplace inversion to retrieve the time-dependent solutions.  相似文献   

9.
In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison with the conventional moving least-squares (MLS) approximation function, the algebraic equation system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized system equations, and the Newmark time integration method for the time history analyses. In the modeling process, the penalty method is used to impose the essential boundary conditions to obtain the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the finite element method.  相似文献   

10.
A meshless method based on the local Petrov–Galerkin approach is applied to inverse transient heat conduction problems in three-dimensional solids with continuously inhomogeneous and anisotropic material properties. The Heaviside step function is used as a test function in the local weak form, leading to the derivation of local integral equations. Nodal points are randomly distributed in the domain analyzed, and each node is surrounded by a spherical subdomain in which a local integral equation is applied. A meshless approximation based on the moving least-squares method is employed in the implementation. After performing spatial integrations, we obtain a system of ordinary differential equations for certain nodal unknowns. A backward finite-difference method is used for the approximation of the diffusive term in the heat conduction equation. A truncated singular-value decomposition is used to solve the ill-conditioned linear system of algebraic equations at each time step. The effectiveness of the meshless local Petrov–Galerkin (MLPG) method for this inverse problem is demonstrated by numerical examples.  相似文献   

11.
A new meshless method for computing the dynamic stress intensity factors (SIFs) in continuously non-homogeneous solids under a transient dynamic load is presented. The method is based on the local boundary integral equation (LBIE) formulation and the moving least squares (MLS) approximation. The analyzed domain is divided into small subdomains, in which a weak solution is assumed to exist. Nodal points are randomly spread in the analyzed domain and each one is surrounded by a circle centered at the collocation point. The boundary-domain integral formulation with elastostatic fundamental solutions for homogeneous solids in Laplace-transformed domain is used to obtain the weak solution for subdomains. On the boundary of the subdomains, both the displacement and the traction vectors are unknown generally. If modified elastostatic fundamental solutions vanishing on the boundary of the subdomain are employed, the traction vector is eliminated from the local boundary integral equations for all interior nodal points. The spatial variation of the displacements is approximated by the MLS scheme.  相似文献   

12.
 In the present paper the Trefftz function as a test function is used to derive the local boundary integral equations (LBIE) for linear elasticity. Since Trefftz functions are regular, much less requirements are put on numerical integration than in the conventional boundary integral method. The moving least square (MLS) approximation is applied to the displacement field. Then, the traction vectors on the local boundaries are obtained from the gradients of the approximated displacements by using Hooke's law. Nodal points are randomly spread on the domain of the analysed body. The present method is a truly meshless method, as it does not need a finite element mesh, either for purposes of interpolation of the solution variables, or for the integration of the energy. Two ways are presented to formulate the solution of boundary value problems. In the first one the local boundary integral equations are written in all nodes (interior and boundary nodes). In the second way the LBIE are written only at the interior nodes and at the nodes on the global boundary the prescribed values of displacements and/or tractions are identified with their MLS approximations. Numerical examples for a square patch test and a cantilever beam are presented to illustrate the implementation and performance of the present method. Received 6 November 2000  相似文献   

13.
Using some additional sought function and boundary conditions, a precise analytical solution of the heat conduction problem for an infinite plate was obtained using the integral heat balance method with symmetric first-order boundary conditions. The additional sought function represents the variation of temperature with time at the center of a plate and, due to an infinite heat propagation velocity described with a parabolic heat conduction equation, changes immediately after application of a first-order boundary condition. Hence, the range of its time and temperature variation completely incorporates the ranges of unsteadystate process times and temperature changes. The additional boundary conditions are such that their fulfilment is equivalent the fulfilment of a differential equation at boundary points. It has been shown that the fulfilment of an equation at boundary points leads to its fulfilment inside the region. The consideration of an additional sought function in the integral heat balance method provide a possibility to confine the solution of an equation in partial derivatives to the integration of an ordinary differential equation, so this method can be applied to the solution of equations, which do not admit the separation of variables (nonlinear, with variable physical properties of a medium, etc.).  相似文献   

14.
Non-Fourier effect is important in heat conduction in strong thermal environments. Currently, generally-purposed commercial finite element code for non-Fourier heat conduction is not available. In this paper, we develop a finite element code based on a hyperbolic heat conduction equation, which includes the non-Fourier effect in heat conduction. The finite element space discretization is used to obtain a system of differential equations for the time. The transient responses are obtained by solving the system of differential equations, based on the finite difference, mode superposition, or exact time integral. The code is validated by comparing the numerical results with exact solutions for some special cases. The stability analysis is conducted and it shows that the finite difference scheme is an ideal method for the transient solution of the temperature field. It is found that with mesh refining (decreasing mesh size) and/or high-order elements, the oscillation in the vicinity of sharp change vanishes, and can be essentially suppressed by the finite difference scheme. A relationship between the time step and the space length of the element was identified to ensure that numerical oscillation vanishes.  相似文献   

15.
Non-Fourier effect is important in heat conduction in strong thermal environments. Currently, generally-purposed commercial finite element code for non-Fourier heat conduction is not available. In this paper, we develop a finite element code based on a hyperbolic heat conduction equation, which includes the non-Fourier effect in heat conduction. The finite element space discretization is used to obtain a system of differential equations for the time. The transient responses are obtained by solving the system of differential equations, based on the finite difference, mode superposition, or exact time integral. The code is validated by comparing the numerical results with exact solutions for some special cases. The stability analysis is conducted and it shows that the finite difference scheme is an ideal method for the transient solution of the temperature field. It is found that with mesh refining (decreasing mesh size) and/or high-order elements, the oscillation in the vicinity of sharp change vanishes, and can be essentially suppressed by the finite difference scheme. A relationship between the time step and the space length of the element was identified to ensure that numerical oscillation vanishes.  相似文献   

16.
A new local boundary integral equation (LBIE) method for solving two dimensional transient elastodynamic problems is proposed. The method utilizes, for its meshless implementation, nodal points spread over the analyzed domain and employs the moving least squares (MLS) approximation for the interpolation of the interior and boundary variables. On the global boundary, displacements and tractions are treated as independent variables. The local integral representation of displacements at each nodal point contains both surface and volume integrals, since it employs the simple elastostatic fundamental solution and considers the acceleration term as a body force. On the local boundaries, tractions are avoided with the aid of the elastostatic companion solution. The collocation of the local boundary/volume integral equations at all the interior and boundary nodes leads to a final system of ordinary differential equations, which is solved stepwise by the -Wilson finite difference scheme. Direct numerical techniques for the accurate evaluation of both surface and volume integrals are employed and presented in detail. All the strongly singular integrals are computed directly through highly accurate integration techniques. Three representative numerical examples that demonstrate the accuracy of the proposed methodology are provided.  相似文献   

17.
In this paper, a new boundary element analysis approach is presented for solving transient heat conduction problems based on the radial integration method. The normalized temperature is introduced to formulate integral equations, which makes the representation very simple and having no temperature gradients involved. The Green's function for the Laplace equation is adopted in deriving basic integral equations for time-dependent problems with varying heat conductivities and, as a result, domain integrals are involved in the derived integral equations. The radial integration method is employed to convert the domain integrals into equivalent boundary integrals. Based on the central finite difference technique, an implicit time marching solution scheme is developed for solving the time-dependent system of equations. Numerical examples are given to demonstrate the correctness of the presented approach.  相似文献   

18.
A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of quasi-static and transient dynamic problems in two-dimensional (2-D) nonhomogeneous linear viscoelastic media. A unit step function is used as the test functions in the local weak form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The correspondence principle is applied to such nonhomogeneous linear viscoelastic solids where relaxation moduli are separable in space and time variables. Then, the LBIEs are formulated for the Laplace-transformed viscoelastic problem. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-D problems. The moving least squares (MLS) method is used for approximation of physical quantities in LBIEs.  相似文献   

19.
Potential difficulties arise in connection with various physical and engineering problems in which the functions satisfy a given partial differential equation and particular boundary conditions. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, they usually cannot be solved with analytical solutions. The element-free Galerkin (EFG) method is a meshless method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by using the weighted orthogonal basis function to construct the MLS interpolants, we derive the formulae of an improved EFG (IEFG) method for two-dimensional potential problems. There are fewer coefficients in the improved MLS (IMLS) approximation than in the MLS approximation, and in the IEFG method fewer nodes are selected in the entire domain than in the conventional EFG method. Hence, the IEFG method should result in a higher computing speed.  相似文献   

20.
To simulate the transient scalar wave propagation in a two‐dimensional unbounded waveguide, an explicit finite element artificial boundary scheme is proposed, which couples the standard dynamic finite element method for complex near field and a high‐order accurate artificial boundary condition (ABC) for simple far field. An exact dynamic‐stiffness ABC that is global in space and time is constructed. A temporal localization method is developed, which consists of the rational function approximation in the frequency domain and the auxiliary variable realization into time domain. This method is applied to the dynamic‐stiffness ABC to result in a high‐order accurate ABC that is local in time but global in space. By discretizing the high‐order accurate ABC along artificial boundary and coupling the result with the standard lumped‐mass finite element equation of near field, a coupled dynamic equation is obtained, which is a symmetric system of purely second‐order ordinary differential equations in time with the diagonal mass and non‐diagonal damping matrices. A new explicit time integration algorithm in structural dynamics is used to solve this equation. Numerical examples are given to demonstrate the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号