首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由于紫外光在硅中的穿透深度有限,以及多晶硅栅极对紫外光的吸收,导致传统的硅基CMOS图像传感器在紫外光波段的响应不高。在此,本文选择一种低成本的下转换法来提升CMOS图像传感器的紫外响应能力,采用真空热蒸发法分别在石英衬底和CMOS图像传感器的像敏面上蒸镀了晕苯薄膜,并对薄膜的光学性能、红外光谱、光稳定性和热稳定性进行了研究。实验结果表明,晕苯薄膜能吸收紫外光并发射出500 nm的绿色荧光,可以与CMOS图像传感器的光谱响应峰值很好地匹配;同时,发现晕苯红外吸收光谱的实验值和计算值基本吻合;薄膜在200 ℃温度下退火20 min后,其发射峰的荧光强度保持在原来的95.7%;在280 nm激发波长照射大约60 min后,发光强度呈指数衰减至初始值的64%。采用CMOS单色相机在可见光(400~780 nm)和紫外光(365 nm)下定性分析了薄膜的紫外增强效果,发现蒸镀晕苯薄膜后的CMOS单色相机可以提高对紫外光的灵敏度。  相似文献   

2.
A new photodiode for the UV/blue spectral range, which can be integrated monolithically with CMOS circuits, is presented. Such optoelectronic integrated circuits (OEICs) with a high sensitivity in the UV/blue spectral range are needed in near-future optical storage systems like digital versatile disk (DVD) or digital video recording (DVR). At 400 nm, our so-called finger photodiode achieves a responsivity of 0.23 A/W corresponding to a quantum efficiency η of 70% [with an antireflection coating (ARC)] and rise and fall times of 1.0 ns and 1.1 ns, respectively. The finger photodiode can be used in the red spectral range, too. At 638 nm, the responsivity is 0.49 A/W (η=95%) and rise and fall times of less than 2.3 ns are achieved. For the integration of the finger photodiode in an industrial 1 μm twin-well CMOS process, only one additional mask is needed in order to block out the threshold voltage implantation in the photo-active region  相似文献   

3.
We present a single-chip integration of a CMOS image sensor with an embedded flexible processing array and dedicated analog-to-digital converter. The processor array is designed to perform convolution and transformation algorithms with arbitrary kernels. It has been designed to carry out the multiplication of analog image data with given digital kernel coefficients and to add up the results. The processor array is an analog implementation of a highly parallel architecture which is scalable to any desired sensor resolution while preserving video-rate operation. A prototype implementation has been realized in a 0.6-/spl mu/m CMOS technology. Switched current technique has been applied to obtain compact and robust circuits. The prototype's sensor resolution is 64 /spl times/ 128 pixels. The processor array occupies a small chip area and consumes only a small percentage of the power (250 /spl mu/W) of the whole image sensor.  相似文献   

4.
CMOS图像传感器及其研究   总被引:5,自引:0,他引:5  
介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势.  相似文献   

5.
Smart CMOS image sensor arrays   总被引:1,自引:0,他引:1  
In this paper, we present several smart image sensor arrays intended for various applications. We discuss the realization of image sensors in CMOS technology and show some examples of one-dimensional (1-D) and two-dimensional (2-D) smart image arrays  相似文献   

6.
CMOS active pixel image sensor   总被引:3,自引:0,他引:3  
A new CMOS active pixel image sensor is reported. The sensor uses a 2.0 μm double-poly, double-metal foundry CMOS process and is realized as a 128×128 array of 40 μm×40 μm pixels. The sensor features TTL compatible voltages, low noise and large dynamic range, and will be useful in machine vision and smart sensor applications  相似文献   

7.
CMOS图象传感器是多功能、高性能的摄象器件。本文详细介绍了其工作原理及其在微型摄象机、数码相机、医学等方面的应用  相似文献   

8.
I. Introduction Complementary Metal Oxide Semiconductor (CMOS) image sensor has been becoming in-creasingly significant in the field of solid image sensor. Compared with Charge-Coupled Device (CCD) image sensor, CMOS image sensor possesses many advantages, such as smaller size, more con-venient to be integrated with other devices, lower power consumption and cost, etc[1,2]. To date, CMOS image sensor is adopted in almost all mo-biles which can take pictures. In addition, CMOS image …  相似文献   

9.
CMOS图像传感器的辐射实验   总被引:3,自引:3,他引:3  
为了考察商用CMOS图像传感器应用于空间的可行性,对进行了空间辐射环境模拟实验研究.实验采用60Co-γ辐射源模拟空间辐射环境,辐射最大剂量为5× 104 rad(Si),辐射速率为1 Gy/s.在辐照时,根据实验需要在CMOS两端加偏置电压或不加偏置电压,并采用在线和离线测量相结合的方法.实验结果表明:辐射初期各项性...  相似文献   

10.
岳云 《今日电子》2001,(10):7-7
C3D(CMOS Color Captive Device)是新一代半导体成像技术,它不仅提高了像素设计技术,也改进了生产工艺.采用这种技术生产的0.25 μ mCMOS图像传感器能够在不牺牲性能的前提下增加晶体管的数量和占空因数(Fill Factor).除了增加像素设计的选择方案之外,还可实现更为复杂的功能和更低的功耗,并且在速度方面也很有优势.  相似文献   

11.
We report on two generations of CMOS image sensors with digital output fabricated in a 0.6 μm CMOS process. The imagers embed an ALOHA MAC interface for unfettered self-timed pixel read-out targeted to energy-aware sensor network applications. Collision on the output is monitored using contention detector circuits. The image sensors present very high dynamic range and ultra-low power operation. This characteristics allow the sensor to operate in different lighting conditions and for years on the sensor network node power budget. Eugenio Culurciello (S’97–M’99) received the Ph.D. degree in Electrical and Computer Engineering in 2004 from Johns Hopkins University, Baltimore, MD. In July 2004 he joined the department of Electrical Engineering at Yale University, where he is currently an assistant professor. He founded and instrumented the E-Lab laboratory in 2004. His research interest is in analog and mixed-mode integrated circuits for biomedical applications, sensors and networks, biological sensors, Silicon on Insulator design and bio-inspired systems. Andreas G. Andreou received his Ph.D. in electrical engineering and computer science in 1986 from Johns Hopkins University. Between 1986 and 1989 he held post-doctoral fellow and associate research scientist positions in the Electrical and Computer engineering department while also a member of the professional staff at the Johns Hopkins Applied Physics Laboratory. Andreou became an assistant professor of Electrical and Computer engineering in 1989, associate professor in 1993 and professor in 1996. He is also a professor of Computer Science and of the Whitaker Biomedical Engineering Institute and director of the Institute’s Fabrication and Lithography Facility in Clark Hall. He is the co-founder of the Johns Hopkins University Center for Language and Speech Processing. Between 2001 and 2003 he was the founding director of the ABET accredited undergraduate Computer Engineering program. In 1996 and 1997 he was a visiting professor of the computation and neural systems program at the California Institute of Technology. In 1989 and 1991 he was awarded the R.W. Hart Prize for his work on mixed analog/digital integrated circuits for space applications. He is the recipient of the 1995 and 1997 Myril B. Reed Best Paper Award and the 2000 IEEE Circuits and Systems Society, Darlington Best Paper Award. During the summer of 2001 he was a visiting professor in the department of systems engineering and machine intelligence at Tohoku University. In 2006, Prof. Andreou was elected as an IEEE Fellow and a distinguished lecturer of the IEEE EDS society. Andreou’s research interests include sensors, micropower electronics, heterogeneous microsystems, and information processing in biological systems. He is a co-editor of the IEEE Press book: Low-Voltage/Low-Power Integrated Circuits and Systems, 1998 (translated in Japanese) and the Kluwer Academic Publishers book: Adaptive Resonance Theory Microchips, 1998. He is an associate editor of IEEE Transactions on Circuits and Systems I.  相似文献   

12.
CMOS image sensors with logarithmic response are attractive devices for applications where a high dynamic range is required. Their strong point is the high dynamic range. Their weak point is the sensitivity to pixel parameter variations introduced during fabrication. This gives rise to a considerable fixed pattern noise (FPN) that deteriorates the image quality unless pixel calibration is used. In the present work a technique to remove the FPN by employing on-chip calibration is introduced, where the effect of threshold voltage variations in pixels is cancelled. An image sensor based on an active pixel structure with five transistors has been designed, fabricated, and tested. The sensor consists of 525×525 pixels measuring 7.5 μm×10 μm, and is fabricated in a 0.5-μm CMOS process. The measured dynamic range is 120 dB while the FPN is 2.5% of the output signal range  相似文献   

13.
A CMOS image sensor with a double-junction active pixel   总被引:1,自引:0,他引:1  
A CMOS image sensor that employs a vertically integrated double-junction photodiode structure is presented. This allows color imaging with only two filters. The sensor uses a 184*154 (near-QCIF) 6-transistor pixel array at a 9.6-/spl mu/m pitch implemented in 0.35-/spl mu/m technology. Results of the device characterization are presented. The imaging performance of an integrated two-filter color sensor is also projected, using measurements and software processing of subsampled images from the monochrome sensor with two color filters.  相似文献   

14.
借鉴生物视网膜进行图像采集和处理的结构及功能,设计了具有视网膜仿生片上信号处理电路的智能CMOS图像传感器(CIS)。像元内的仿生处理电路主要由自适应光接受器、滤波网络和减法运算电路3部分构成;CIS采用结构简单的空间滤波电阻网络和基于运算放大器的减法电路分别模拟水平细胞和双极细胞的功能,实现图像的边缘检测。在Chartered 0.35μm 2P4M CMOS工艺参数下,对各单元电路及6×6 CIS阵列进行仿真。  相似文献   

15.
A high-sensitivity CMOS image sensor using gain-adaptive column amplifiers is presented and tested. The use of high gain for the column amplifier reduces input-referred random noise, and when coupled with a column-based digital noise cancellation technique, also reduces fixed pattern noise. An experimental application of the circuit using 0.25-/spl mu/m CMOS technology with pinned photodiodes gave an rms random noise of 263 /spl mu/V and an rms fixed pattern noise of 50 /spl mu/V.  相似文献   

16.
面阵CMOS图像传感器性能测试及图像处理   总被引:1,自引:4,他引:1  
CMOS图像传感器具有驱动简单、单电源供电、集成度高、功耗低、抗辐射能力强等优点。但是在航天光学遥感领域,CMOS图像传感器应用还不普遍。在该领域亟需大规模、高读出速度、大动态范围的图像传感器,CMOS图像传感器LUPA4000正是这样一款高性能面阵图像传感器,因此,选择LUPA4000作为研究对象,对其缺陷像元、光响应非均匀性、信噪比等性能指标进行测试。测试结果表明存在缺陷像元数量多、光响应非均匀性较大、信噪比较低等问题。根据测试结果采用暗背景扣除、缺陷像元替换、非均匀校正三种方法进行图像处理。对每种方法单独处理和各种方法组合处理的处理效果从图像信噪比和成像图像质量两方面进行分析评估,结果表明:非均匀校正联合缺陷像元替换的处理方法处理效果最佳。  相似文献   

17.
低照度CMOS图像传感器设计与实现   总被引:4,自引:1,他引:4       下载免费PDF全文
李金洪  邹梅 《红外与激光工程》2018,47(7):720002-0720002(7)
设计了一种基于电容反馈跨阻放大器型(Capacitive Trans-impedance Amplifier,CTIA)像元电路与双采样(Delta Double Sampling,DDS)的低照度CMOS图像传感器系统。采用CTIA像元电路提供稳定的光电二极管偏置电压以及高注入效率,完成在低照度情况下对微弱信号的读取;同时采用数字DDS结构,通过在片外实现像元积分信号与复位信号的量化结果在数字域的减法,达到抑制CMOS图像传感器中固定图案噪声的目的,进一步提高低照度CIS的成像质量。基于0.35 m标准CMOS工艺对此基于CTIA像元电路的CMOS图像传感器芯片进行流片,像元阵列为256256,像元尺寸为16 m16 m。测试结果表明该低照度CMOS图像传感器系统可探测到0.05 lx光照条件下的信号。  相似文献   

18.
周彦平  谢小龙  刘洋  靳浩  于思源 《红外与激光工程》2016,45(5):520006-0520006(4)
研究了电子辐射剂量对CMOS图像传感器性能的影响,性能参数为平均暗电流输出和光强响应度。搭建了电子辐射场和光强响应度的测量系统,在器件处于工作状态和非工作状态下分别对其辐射,辐射剂量为:5103 rad、1104 rad、7104 rad、1105 rad、5105 rad。对于暗电流,当辐射总剂量超过7104 rad~1105 rad之间的某一个阈值时,暗电流随着辐射剂量的增长基本呈线性增加;光强响应方面,当器件处于非工作状态接受辐射时,辐射剂量对光强响应影响不大;当器件处于工作状态接受辐射时,辐射剂量超过7104 rad,光强响应曲线会下移,斜率减小,灵敏度降低。理论分析后,得到了暗电流随电子辐射剂量的变化模型。研究表明:长期工作于空间环境下的CMOS图像传感器,容易受到辐射总剂量效应的影响,需采取一定的防辐射措施。  相似文献   

19.
李晓延 《今日电子》2006,(11):61-61,63
数码相机和可拍照式便携设备的兴起,使得CMOS图像传感器这个名词进入大众的视野,而这种产品也成为了半导体产品中增长最快的一种。其实,在几年前,CMOS传感器还没有今天这样耀眼的地位,那时的它还只能仰望强大的对手CCD传感器。但是,仅仅是几年的功夫,它就可以同CCD分庭抗礼了。  相似文献   

20.
A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to110 MeV·cm2/mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号