共查询到7条相似文献,搜索用时 15 毫秒
1.
In a recent article, Chen et al. [Electrochimica Acta, 2014, 130: 279] presented their fabrication and characterization results on a graphene/n-Si solar cell where the Au nanoparticles were inserted in graphene to increase its optical and electrical properties. The higher efficiency of the device was attributed to increased conductivity of graphene after doping with Au nanoparticles. However, the knowledge in the field of Schottky diode solar cells relates this to increased band bending at the junction. Also, to explain the instability behaviour, they concluded that the growth of silicon oxide on the Si surface or oxygen adsorption on the window layer resulted in the device performance increasing initially and decreasing in the end. However, this instability seems to be due to variation in series resistance reduced at the beginning because of slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles into n-Si layer. We also propose that inserting a very thin p-type layer at the junction will enhance the carrier collection and performance of this device. 相似文献
2.
Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell''s performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end. 相似文献
3.
Duygu Kozanoglu Dogukan Hazar Apaydin Ali Cirpan Emren Nalbant Esenturk 《Organic Electronics》2013,14(7):1720-1727
The effects of gold (Au) nanoparticles (NPs) with different morphologies (star, rod, sphere) incorporated into buffer layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), of polymer-based organic solar cells (OSCs) were investigated. Solar cells having gold nanoparticles exhibited significant improvement in device efficiency relative to the reference device. The observed improvement is most likely due to the surface plasmon and enhanced light reflection and scattering properties of the Au NPs. The power conversion efficiency (PCE) is increased ca. 29% with Au nanostars, ca. 14% with Au nanorods and 11% with Au nanospheres compared to the device with no Au NP (reference device). Au nanostars provide the strongest contribution to the efficiency among all NP morphologies studied as they have large size, sharp features, and strongest localized surface plasmon resonance effect associate with their morphology. 相似文献
4.
Shiyang Zhu Xin-Ping Qu R. L. Van Meirhaeghe C. Detavernier Guo-Ping Ru F. Cardon Bing-Zong Li 《Solid-state electronics》2000,44(12)
Ballistic electron emission microscopy (BEEM) and ballistic electron emission spectroscopy have been performed on polycrystalline and epitaxial CoSi2/n-Si(1 0 0) contacts at temperatures ranging from −144°C to −20°C. The ultra-thin CoSi2 films (10 nm) were fabricated by solid state reaction of a single layer of Co (3 nm) or a multilayer of Ti (1 nm)/Co (3 nm)/amorphous-Si(1 nm)/Ti (1 nm) with a Si substrate, respectively. The spatial distribution of barrier height over the contact area obeys a Gaussian function at each temperature. The mean barrier height increases almost linearly with decreasing temperature with a coefficient of −0.23±0.02 meV/K for polycrystalline CoSi2/Si diodes and −0.13±0.03 meV/K for epitaxial diodes. This is approximately equal to one or one-half of the temperature coefficient of the indirect energy gap in Si, respectively. It suggests that the Fermi level is pinned to different band positions of Si. The width of the Gaussian distribution is about 30–40 meV, without clear dependence on the temperature. The results obtained from conventional current–voltage and capacitance–voltage (I–V/C–V) measurements are compared to BEEM results. 相似文献
5.
Low cost TiO2/ Sb2(S, Se)3 heterojunction thin film solar cell are prepared successfully by using sol-gel and chemical bath deposition. At first, TiO2 thin film is prepared on the ITO-coated glass substrate by a simple sol-gel and dip-coating method. Subsequently, Sb2(S, Se)3 film is fabricated on TiO2 by selenizing the Sb2S3 film prepared by chemical bath deposition (CBD). The heat-treated process of TiO2 and Sb2(S, Se)3 films has been discussed, respectively. After being heat-treated at 550 °C for TiO2 and 290 °C for Sb2(S, Se)3 films, the photovoltaic devices are completed with the conductive graphite as electrode. The J-V characteristics of TiO2/ Sb2(S, Se)3 solar cell are measured and the open circuit voltage (Voc) of this cell is about 350 mV. 相似文献
6.
S. Merdes D. Abou‐Ras R. Mainz R. Klenk M. Ch. Lux‐Steiner A. Meeder H. W. Schock J. Klaer 《Progress in Photovoltaics: Research and Applications》2013,21(1):88-93
In this letter, we report externally confirmed total area efficiencies reaching up to 12.9% for CdS/Cu(In,Ga)S2 based solar cells. These are the highest externally confirmed efficiencies for such cells. The absorbers were prepared from sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor. Structural, compositional, and electrical properties of one of these champion cells are presented. The correlation between the Ga distribution profile and solar cell properties is discussed. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Dong Hyeop Shin Ji Hye Kim Young Min Shin Kyung Hoon Yoon Essam A. Al‐Ammar Byung Tae Ahn 《Progress in Photovoltaics: Research and Applications》2013,21(2):217-225
ZnS is a candidate to replace CdS as the buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells for Cd‐free commercial product. However, the resistance of ZnS is too large, and the photoconductivity is too small. Therefore, the thickness of the ZnS should be as thin as possible. However, a CIGS solar cell with a very thin ZnS buffer layer is vulnerable to the sputtering power of the ZnO : Al window layer deposition because of plasma damage. To improve the efficiency of CIGS solar cells with a chemical‐bath‐deposited ZnS buffer layer, the effect of the plasma damage by the sputter deposition of the ZnO : Al window layer should be understood. We have found that the efficiency of a CIGS solar cell consistently decreases with an increase in the sputtering power for the ZnO : Al window layer deposition onto the ZnS buffer layer because of plasma damage. To protect the ZnS/CIGS interface, a bilayer ZnO : Al film was developed. It consists of a 50‐nm‐thick ZnO : Al plasma protection layer deposited at a sputtering power of 50 W and a 100‐nm‐thick ZnO : Al conducting layer deposited at a sputtering power of 200 W. The introduction of a 50‐nm‐thick ZnO : Al layer deposited at 50 W prevented plasma damage by sputtering, resulting in a high open‐circuit voltage, a large fill factor, and shunt resistance. The ZnS/CIGS solar cell with the bilayer ZnO : Al film yielded a cell efficiency of 14.68%. Therefore, the application of bilayer ZnO : Al film to the window layer is suitable for CIGS solar cells with a ZnS buffer layer. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献