共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
目标跟踪是计算机视觉领域一项核心技术,通用的目标跟踪算法以单线索或简单融合多个线索为主,当背影突然改变时,单一线索或多个线索的简单融合便难以跟踪成功.针对这个问题,在粒子滤波的框架下提出了自适应融合颜色线索和角点线索的跟踪方法,通过判断各个线索的可信程度,自适应给不同线索分配不同的权重,很好地解决了在复杂背景、互相遮挡情况下的跟踪问题.实验证明,采用的自适应多线索融合方法在实际应用中有更强的鲁棒性. 相似文献
3.
提出了一种彩色序列图像中的实时运动目标跟踪算法,该算法首先利用综合帧间差分法与背景差分法两种方法优点的动态背景更新算法来检测各种运动目标,在后续的图像序列中,利用运动检测算法来确定目标跟踪的起始点,并利用Mean Shift算法来跟踪运动物体;然后再更新Mean Shift的目标模板。实验结果表明,该算法能够克服Mean Shift算法对尺度变化的物体的跟踪效果较差且不能检测突然出现在图像序列中的物体的不足,快速准确地跟踪各种物体。 相似文献
4.
众多的目标跟踪算法中,Mean—Shift跟踪算法有良好的实时性,对遮挡、目标变形具有一定的适应性,是公认的效果比较好的跟踪方法。但它也存在不足,传统的Mean—Shift算法当背景的直方图分布和目标的直方图分布类似时,或者目标受到光照、阴影等影响,或有干扰物体靠近目标时,在跟踪时很容易发生目标丢失。鉴于此,提出最先使用Kalman滤波器对距离相对比较远的红外弱小目标的大致运动位置做出目标估计,接着使用Mean—Shift跟踪算法在先前目标估计出的区域内做目标的跟踪匹配,并保证精度。实验结果指出,文中提出的算法对于跟踪系统的观察噪声扰动具有较强的鲁棒性。 相似文献
5.
传统的Mean Shift (MS) 算法只能对发生平移和尺度变化的目标进行跟踪,而对于具有相似性变换或者更复杂的仿射变换的目标跟踪效果很不理想或无法跟踪。为了解决这一问题,提出了两种基于MS的改进算法。第一种算法针对仿射变换,根据奇异值分解理论,仿射变换矩阵可以分解成两个旋转矩阵和一个对角矩阵的乘积,在此基础上建模了一种新的候选目标模型。通过Bhattacharyya系数将目标跟踪问题转化成以仿射变换参数为变量的最优化问题,推导相关参量的一阶偏导数并令其为零从而得出相对于仿射变换的MS算法。另外,针对进行相似性变换的目标也提出了一种新的候选目标模型,并用类似的梯度下降算法估计目标的平移向量和旋转角度。实验结果表明,提出的算法能够跟踪具有相似性变换或仿射变换的目标,比传统的MS算法具有更好的跟踪性能。 相似文献
6.
传统的Mean Shift算法,在诸如跟踪目标出现尺度变化、旋转、噪声干扰等复杂情况下,无法得到准确的跟踪结果。提出了一种基于尺度不变特征变换SIFT(Scale Invariant Feature Transform)特征度量的Mean Shift目标跟踪算法,首先根据SIFT算子计算跟踪目标附近的关键点位置和尺度,并获取该尺度空间下关键点邻域的特征向量,然后用跟踪目标区域内的特征向量的模值-方向分布直方图表示该目标,最后使用Mean Shift算法进行跟踪。实验结果表明,该算法在跟踪目标出现尺度变化、旋转、噪声干扰和遮挡等情况下能够准确地跟踪物体,鲁棒性好。 相似文献
7.
8.
基于粒子滤波的红外运动目标跟踪 总被引:1,自引:0,他引:1
提出一种基于粒子滤波及Mean Shift算法的红外运动目标跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型,并针对红外目标机动性强,需要大量粒子才能保证算法鲁棒性的问题,将Mean Shift算法引入到粒子更新的过程中,使粒子分布在观测的局部区域内,在利用少量粒子实现分布多样性的同时,有效克服了粒子退化现象。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于传统的粒子滤波算法。 相似文献
9.
为解决红外运动目标跟踪中的遮挡、形变等问题,提出一种基于粒子滤波的跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型。并将飞机目标的运动看作惯性受限的非平稳过程,采用微分线性拟合模型作为系统状态转移模型。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于Mean Shift算法。 相似文献
10.
该文提出了一种综合Mean Shift算法和灰度模板匹配的主动跟踪算法。该算法利用灰度模板匹配与运动目标在图像的位置无关的特点,在视角和焦距发生变化后用灰度模板进行穷尽搜索,再用匹配结果更新Mean Shift搜索窗口,解决了Mean Shift算法要已知目标区域才能正确跟踪的问题。该算法能在视角和焦距发生变化的情况下能正确的跟踪运动目标并能使被跟踪的运动目标始终保持在图像的中心区域。实验表明,该算法具有较好的可行性。 相似文献
11.
提出一个基于均值移动(Mean Shift)和贪婪算法的多人脸跟踪器.首先建立多个均值移动目标跟踪器以进行多人脸跟踪.结合卡尔曼滤波逐个检测目标并从视频帧中清除已跟踪到的人脸,以解决当多个目标相邻或相互遮挡时相应的跟踪窗口会收敛于最大目标、导致其他目标丢失的难题.引入辅助窗口并根据其纹理信息确定粘连目标的对应.实验结果表明,该多人脸跟踪算法可实现稳健的实时多人脸跟踪. 相似文献
12.
目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。其中基于Mean Shift的运动目标跟踪算法因其计算量小,实时性好,简单易行等特点而受到广泛关注,但该算法在目标突变或严重帧丢失以及目标严重遮挡的情况跟踪效果不佳,留下了改进空间。在传统基于Mean Shift运动目标跟踪方法基础上,通过创建并维护多样性模板库为跟踪过程提供更丰富的目标描述信息,提高算法运动目标跟踪效果。实验结果表明,新算法较好地解决了在目标突变和严重帧丢失情况下不能准确跟踪目标的问题,并且对目标的完全遮挡也具有很好的鲁棒性。 相似文献
13.
经典Mean Shift跟踪算法使用单一颜色直方图跟踪目标,导致其对目标外观的变化鲁棒性较差。为了解决该问题,提出一种多颜色直方图自适应组合Mean Shift跟踪算法。该算法利用多个视图的颜色核函数直方图的加权组合作为目标模型进行Mean Shift跟踪;为了适应目标外观的变化,利用目标区域对每一颜色直方图的概率图均值和方差的比值评价每一颜色直方图的可靠性,并自适应地计算其组合权值。实验结果表明,与现有Mean Shift跟踪算法相比,提出的跟踪算法对目标的外观变化具有更强的鲁棒性。 相似文献
14.
15.
混合目标模型的Mean Shift跟踪算法 总被引:1,自引:0,他引:1
但固定目标模型的Mean Shift算法采用直方图进行匹配,而直方图是一种比较弱的目标特征,当背景和目标的颜色分布较相似时其跟踪效果欠佳。针对这一缺点,提出了一种采用混合目标模型的Mean Shift算法。该算法在匹配过程中使用的目标模型包含了初始帧和前一帧的信息,克服了固定目标模型难以对与背景相似目标以及旋转目标进行准确描述的缺点,获得了较好的跟踪效果。 相似文献