首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
2.
3.
Two cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1), which are released by macrophages during the early inflammatory phase of nerve injury, are known to induce activation of mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK), which locate at different signal transduction pathways and are involved in cell cycle G0/G1 transition and cellular proliferation in human fibroblasts. Activation of these two protein kinases by the cytokines may stimulate fibroblast proliferation in damaged nerves and thereby play a role in the formation of a neuroma, a disorganized mass of tissue that interferes with neural regeneration and repair. To investigate the possibility that this mechanism is operative in neuroma formation, we used cultured, serum-starved fibroblasts from surgically removed human neuromas stimulated with TNF-alpha and/or IL-1 alpha and IL-1 beta, and measured the activation of MAPK and SAPK using myelin basic protein (MBP) and human c-Jun (1-169) glutathione S-agarose transferase (GST) fusion protein as substrates. For comparison, neuroma fibroblast cultures were also stimulated with phorbol 12-myristate 13-acetate (PMA) and platelet-derived growth factor-AB (PDGF-AB), a potent activator for MAPK. TNF-alpha and both forms of IL-1 produced a rapid activation of MAPK, with a peak at 15 min for TNF-alpha stimulation, and a peak at 30 min for IL-1 stimulation. TNF-alpha combined with either IL-1 alpha or IL-1 beta produced a synergistic effect on the activation of MAPK. The increases in MAPK induced by TNF-alpha and IL-1 were similar to the increases induced by PMA and PDGF-AB. To confirm the presence of MAPK, immunoprecipitation and immunoblotting were carried out on experimental and control lysates. TNF-alpha and IL-1 also increased activation of SAPK, but to a lesser extent than MAPK. PMA and PDGF-AB were also much less effective in stimulating activation of SAPK. Our findings indicate that TNF-alpha and IL-1 activate parallel signal transduction pathways in human neuroma fibroblasts, and that they are relatively stronger activators of MAPK than of SAPK. Previous studies have convincingly demonstrated that MAPK and SAPK are involved in human fibroblast proliferation. The results of our study suggest that TNF-alpha and IL-1 may play a role in frustrating functional nerve regeneration after injury by stimulating these two kinases, which, in turn, leads to fibroblast proliferation and formation of neuromas.  相似文献   

4.
The 39-43-amino acid amyloid beta-protein (A beta), which is progressively deposited in cerebral plaques and blood vessels in Alzheimer's disease (AD), is released by cultured human cells during normal metabolism. Here we show that agents which activate protein kinase C or otherwise enhance protein phosphorylation caused a substantial decrease in A beta production in vitro. Protein kinase C activation also markedly decreased A beta release from cells that express mutant forms of the beta-amyloid precursor protein genetically linked to familial AD. Inhibition of A beta secretion could also be effected by direct stimulation of m1 muscarinic acetylcholine receptors with carbachol. These results demonstrate that activation of the protein kinase C signal transduction pathways down-regulates the generation of the amyloidogenic A beta peptide. Pharmacologic agents that activate this system, including a variety of first messengers, could potentially slow the development or growth of some A beta plaques during the early stages of AD.  相似文献   

5.
6.
We have assessed five signal transduction pathways to determine the role each might play in the malignant transformation of mammary epithelium initiated by neu, heregulin/NDF, TGFalpha, v-Ha-ras and c-myc in transgenic mice. The study involves a molecular and pharmacologic assessment of Erk/MAP kinase, Jnk/SAP kinase, PI 3-kinase, protein kinase C, and the Src-related kinases Lck and Fyn. Our results indicate that oncogenes capable of transforming mammary gland epithelium activate and require specific signal transduction pathways. For example, mammary tumors initiated by neu, v-Ha-ras and c-myc have high levels of active Erk/MAP kinase and their anchorage independent growth is strongly inhibited by PD098059, an inhibitor of Mek/ MAP kinase kinase. By contrast, Erk/MAP kinase activity is weak in tumors initiated by TFGalpha and heregulin/NDF and the corresponding cell lines are not growth inhibited by PD098059. Similarly, PI 3-kinase is strongly activated in neu, TGFalpha and heregulin/NDF initiated tumor cell lines, but not in c-myc or v-Ha-ras initiated tumor cell lines. The anchorage independent growth of all these tumor cell lines are, however, inhibited by the specific PI 3-kinase inhibitor LY294001. Further illustrating this oncogene-based specificity, PP1, a specific inhibitor of the Src-like kinases, Lck and Fyn, blocks anchorage-independent cell growth only in the TGFalpha initiated mammary tumor cell line. Taken together with additional observations, we conclude that certain oncogenes reliably require the recruitment/activation of specific signal transduction pathways. Such specific relationships between the initiating oncogene and a required pathway may reflect a direct activating effect or the parallel activation of a pathway that is a necessary oncogenic collaborator for transformation in the mammary gland. The work points to a molecular basis for targeting therapy when an initiating oncogene can be implicated; for example, because of amplification, increased expression, genetic alteration, or heritable characteristics.  相似文献   

7.
Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that positively or negatively regulates the proliferation of various types of cells. In this study we have examined whether or not the activation of the mitogen-activated protein (MAP) kinases is involved in the transduction of cell growth modulation signals of TGF-beta 1, as MAP kinase activity is known to be closely associated with cell cycle progression. Although TGF-beta 1 stimulated the growth of quiescent Balb 3T3 and Swiss 3T3 cells, it failed to detectably stimulate the tyrosine phosphorylation and activation of the 41- and 43-kDa MAP kinases at any time point up to the reinitiation of DNA replication. TGF-beta 1 also failed to stimulate the expression of the c-fos gene. Furthermore, TGF-beta 1 synergistically enhanced the mitogenic action of epidermal growth factor (EGF) without affecting EGF-induced MAP kinase activation in these fibroblasts, and it inhibited the EGF-stimulated proliferation of mouse keratinocytes (PAM212) without inhibiting EGF-induced MAP kinase activation. Thus, the ability of TGF-beta 1 to modulate cell proliferation is apparently not associated with the activation of MAP kinases. In this respect, TGF-beta 1 is clearly distinct from the majority, if not all, of peptide growth factors, such as platelet-derived growth factor and EGF, whose ability to modulate cell proliferation is closely associated with the activation of MAP kinases. These results also suggest that the activation of MAP kinases is not an absolute requirement for growth factor-stimulated mitogenesis.  相似文献   

8.
9.
The process of high-affinity IgE receptor (Fc epsilon RI)-mediated signal transduction in human basophils and mast cells is accompanied by activation of protein kinase C (PKC). The present study investigated the effects of a novel protein kinase inhibitor with in vitro selectivity for PKC (CGP 41251) in comparison with the potent but non-selective PKC inhibitor staurosporine on the activation of human peripheral basophilic leukocytes and enzymatically isolated human skin mast cells. CGP 41251 exerted strong concentration-dependent inhibitory effects on Fc epsilon RI-mediated histamine release from both cell populations. In addition, the IgE-mediated generation of arachidonic acid metabolites (leukotriene C4/D4 and prostaglandin E2) from human basophils was also significantly inhibited by this compound. Its action was not significantly different from the action of staurosporine. Direct activation of cellular PKC by the phorbol ester 12-o-tetradecanoyl-phorbol-13-acetate and subsequent histamine release from basophils was also inhibited by both compounds. CGP 41251 did not suppress N-formyl-met-leu-phe- or A23187-induced activation of basophils, whereas A23187-induced mediator release from human skin mast cells was inhibited in a concentration-dependent fashion. We conclude that an increase of in vitro selectivity for PKC does not significantly enhance inhibitory effects on immunological activation of histamine-containing cells. Moreover, nonimmunological pathways of signal transduction in basophils and mast cells appear to be mediated by distinct biochemical events.  相似文献   

10.
Leukotriene D4 (LTD4) is a major lipid mediator involved in inflammatory and allergic disorders including bronchial asthma. Despite its potent biological activity, little is known about the receptor and intracellular signaling pathways. Here we analyzed the signal transduction mechanisms through LTD4 receptors using human monocytic leukemia THP-1 cells. When these cells were stimulated with LTD4, intracellular calcium concentration was increased and mitogen-activated protein kinase (MAP kinase) was activated severalfold. This activation was inhibited by staurosporine or GF109203X treatment or abolished by protein kinase C depletion. Cytosolic protein kinase Calpha was translocated to the membrane, and Raf-1 was activated by LTD4 treatment in a similar time course. LTD4-induced Raf-1 activation was diminished by protein kinase C depletion in the cells. A chemotactic response of THP-1 cells toward LTD4 was observed which was inhibited by pertussis toxin (PTX) pretreatment. Thus, LTD4 has at least two distinct signaling pathways in THP-1 cells, a PTX-insensitive mitogen-activated protein kinase activation through protein kinase Calpha and Raf-1 and a PTX-sensitive chemotactic response. This cellular signaling can explain in part the versatile activities of LTD4 in macrophages under inflammatory and allergic conditions.  相似文献   

11.
Kaposi's sarcoma (KS) spindle cell growth and spread have been reported to be modulated by various cytokines as well as the human immunodeficiency virus (HIV) gene product Tat. Recently, HIV-1 Tat has been shown to act like a cytokine and bind to the Flk-1/KDR receptor for the vascular endothelial growth factor A (VEGF-A), which is expressed by KS cells. We have characterized signal transduction pathways stimulated by HIV-1 Tat upon its binding to surface receptors on KS cells. We observed that stimulation in KS 38 spindle cells resulted in tyrosine phosphorylation and activation of the Flk-1/KDR receptor. We also report that HIV-1 Tat treatment enhanced the phosphorylation and association of proteins found in focal adhesions, such as the related adhesion focal tyrosine kinase RAFTK, paxillin, and p130(cas). Further characterization revealed the activation of mitogen-activated protein kinase, c-Jun amino-terminal kinase (JNK), and Src kinase. HIV-1 Tat contains a basic domain which can interact with growth factor tyrosine kinase receptors and a classical RGD sequence which may bind to and activate the surface integrin receptors for fibronectin and vitronectin. We observed that stimulation of KS cells with basic as well as RGD sequence-containing Tat peptides resulted in enhanced phosphorylation of RAFTK and activation of MAP kinase. These studies reveal that Tat stimulation activates a number of signal transduction pathways that are associated with cell growth and migration.  相似文献   

12.
Formyl peptide receptor activation of three mitogen-activated protein kinase (MAPK) cascades, extracellular signal-regulated kinases (ERKs), N-terminal kinases (JNKs), and p38 MAPK was examined in differentiated HL-60 granulocytes. FMLP stimulated a concentration- and time-dependent increase in ERK, JNK, and p38 MAPK activities, all of which were dependent on a pertussis toxin-sensitive G protein. Pharmacologic inhibitors were used to examine the roles of tyrosine kinases, phosphatidylinositol 3-kinase, protein kinase C, and phospholipase C. FMLP-stimulated ERK activity was dependent on tyrosine kinases, phosphatidylinositol 3-kinase, protein kinase C, and phospholipase C; p38 MAPK activation was dependent on phosphatidylinositol 3-kinase and phospholipase C; while JNK activation was independent of all of these signaling components. The mitogen-activated protein kinase/ERK kinase inhibitor PD098059 reduced ERK activation by 90%, while an inhibitor of p38 MAPK, SB203580, inhibited p38 MAPK activation by 80%. Both PD098059 and SB203580 inhibited FMLP-stimulated superoxide release, as did inhibitors directed against protein kinase C, tyrosine kinases, and phosphatidylinositol 3-kinase. We conclude that formyl peptide receptors are coupled to three MAPK cascades by Gi proteins. ERKs, p38 MAPK, and JNKs are each activated by distinct proximal signal transduction pathways. Activation of p38 MAPK is necessary for FMLP stimulation of respiratory burst activity; however, a second signal that may involve ERK is also required for this activity.  相似文献   

13.
Drug design targeted at microtubules has led to the advent of some potent anti-cancer drugs. In the present study, we demonstrated that microtubule-binding agents (MBAs) taxol and colchicine induced immediate early gene (c-jun and ATF3) expression, cell cycle arrest, and apoptosis in the human breast cancer cell line MCF-7. To elucidate the signal transduction pathways that mediate such biological activities of MBAs, we studied the involvement of mitogen-activated protein (MAP) kinases. Treatment with taxol, colchicine, or other MBAs (vincristine, podophyllotoxin, nocodazole) stimulated the activity of c-jun N-terminal kinase 1 (JNK1) in MCF-7 cells. In contrast, p38 was activated only by taxol and none of the MBAs changed the activity of extracellular signal-regulated protein kinase 2 (ERK2). Activation of JNK1 or p38 by MBAs occurred subsequent to the morphological changes in the microtubule cytoskeleton induced by these compounds. Furthermore, baccatine III and beta-lumicolchicine, inactive analogs of taxol and colchicine, respectively, did not activate JNKI or p38. These results suggest that interactions between microtubules and MBAs are essential for the activation of these kinases. Pretreatment with the antioxidants N-acetyl-L-cysteine (NAC), ascorbic acid or vitamin E, blocked H2O2- or doxorubicin-induced JNKI activity, but had no effect on JNKI activation by MBAs, excluding a role for oxidative stress. However, BAPTA/AM, a specific intracellular Ca2+ chelator, attenuated JNK1 activation by taxol but not by colchicine, and had no effect on microtubule changes induced by taxol. Thus, stabilization or depolymerization of microtubules may regulate JNK1 activity via distinct downstream signaling pathways. The differential activation of MAP kinases opens up a new avenue for addressing the mechanism of action of antimicrotubule drugs.  相似文献   

14.
15.
We compared HDL3- and LDL-induced signal transduction in normal and Tangier fibroblasts to elucidate whether impaired signal transduction responses to lipoproteins might contribute to disturbed cellular lipid and lipoprotein metabolism in Tangier disease, a rare autosomal disorder of cellular lipid and lipoprotein metabolism. In several cell types HDL and LDL activate a currently unknown isoform of phosphatidylinositol-specific phospholipase C (PI-PLC) that results in the generation of 1,2-diacylglycerol and inositol 1,4,5-trisphosphate. Compared with normal fibroblasts, Tangier fibroblasts stimulated with HDL3 or LDL resulted in a significantly reduced accumulation of inositol phosphates and 1,2-diacylglycerol formation. Furthermore, in Tangier fibroblasts both lipoproteins failed to mobilize calcium from internal pools, and the cytosol-to-membrane redistribution of protein kinase C (in both the alpha and epsilon isoforms) was markedly reduced. Thus, the data indicate an impaired PI-PLC activation in response to lipoproteins in Tangier fibroblasts.  相似文献   

16.
Ca2+-dependent protein kinases and stress signal transduction in plants   总被引:1,自引:0,他引:1  
  相似文献   

17.
Full and functionally selective M1 muscarinic agonists (carbachol and AF102B, respectively) activate secretion of the soluble form of amyloid precursor protein (APPs) in PC12 cells expressing the m1 muscarinic receptor (PC12M1 cells). This activation is further augmented by neurotrophins such as nerve growth factor and basic fibroblast growth factor. Muscarinic stimulation activates two transduction pathways that lead to APPs secretion: protein kinase C (PKC)-dependent and mitogen-activated protein kinase (MAPK)-dependent pathways. These pathways operate in parallel and converge with transduction pathways of neurotrophins, resulting in enhancement of APPs secretion when both muscarinic agonist and neurotrophins stimulate PC12M1 cells. These conclusions are supported by the following findings: (a) Only partial blockade of APPs secretion is observed when PKC, p21ras, or MAPK is fully inhibited by their respective specific inhibitors, GF109203X, S-trans, trans-farnesylthiosalicylic acid, and PD98059. (b) K252a, which blocks PKC and phorbol 12-myristate 13-acetate-induced APPs secretion, enhances both muscarinic-stimulated MAPK activation and APPs secretion. (c) Activation of MAPK in PC12M1 cells by muscarinic agonists is Ras-dependent but PKC-independent and is enhanced synergistically by neurotrophins. These results suggest that muscarinic stimulation of APPs secretion is mediated by at least two independent pathways that converge and enhance the signal for APPs secretion at the convergence point.  相似文献   

18.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay using myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

19.
The mechanism of glucose deprivation-induced activation of Lyn kinase (Lyn), c-Jun N-terminal kinase 1 (JNK1) and increased expression of basic fibroblast growth factor (bFGF) and c-Myc was investigated in MCF-7/ADR adriamycin-resistant human breast carcinoma cells. Glucose deprivation significantly increased steady state levels of oxidized glutathione content (GSSG) and intracellular prooxidants (presumably hydroperoxides) as well as caused the activation of Lyn, JNK1, and the accumulation of bFGF and c-Myc mRNA. The suppression of GSSG accumulation and prooxidant production by treatment with the thiol antioxidant, N-acetylcysteine, also suppressed all the increases in kinase activation and gene expression observed during glucose deprivation. In addition, glucose deprivation was shown to induce oxidative stress in IMR90 SV40 transformed human fibroblasts, indicating that this phenomena is not limited to the MCF-7/ADR cell line. These and previous observations from our laboratory show that glucose deprivation-induced oxidative stress in MCF-7/ADR cells activates signal transduction involving Lyn, JNK1, and mitogen activated protein kinases (ERK1/ERK2) which results in increased bFGF and c-Myc mRNA accumulation. These results provide support for the hypothesis that alterations in intracellular oxidation/reduction reactions link changes in glycolytic metabolism to signal transduction and gene expression in these human tumor cells.  相似文献   

20.
The c-Abl nonreceptor tyrosine kinase and the c-Jun NH2-terminal kinase (JNK/stress-activated protein kinase) are activated during the injury response to the DNA-damaging agent cisplatin. Loss of DNA mismatch repair activity results in resistance to cisplatin in human cancer cells, suggesting that the mismatch repair proteins function as a detector for cisplatin DNA adducts. To identify signaling pathways activated by this detector, we investigated the effect of the loss of DNA mismatch repair function on the ability of cisplatin to activate the JNK and c-Abl kinases. The results demonstrate that cisplatin activates JNK kinase 3.8 +/- 0.2-fold more efficiently in DNA mismatch repair-proficient than repair-deficient cells, and that activation of c-Abl is completely absent in the DNA mismatch repair-deficient cells. Furthermore, the results show that cisplatin-induced activation of JNK occurs through a stress-activated protein kinase/extracellular signal-regulated kinase kinase 1-independent mechanism. We conclude that activation of JNK and c-Abl by cisplatin is in part dependent upon the integrity of DNA mismatch repair function, suggesting that these kinases are part of the signal transduction pathway activated when mismatch repair proteins recognize cisplatin adducts in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号