首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the reciprocating wear behavior of 7075Al/SiC composites and 6061Al/Al2O3 composites that are prepared through liquid metallurgy route is analyzed to find out the effects of weight percentage of reinforcement and load at the fixed number of strokes on a reciprocating wear testing machine. The Metal Matrix Composite (MMC) pins are prepared with different weight percentages (10, 15 and 20%) of SiC and Al2O3 particles with size of 36 μm. Hardness of these composites increases with increase in wt.% of reinforcement. However, the impact strength decreases with increase in reinforcement content. The experimental result shows that the volume loss of MMC specimens is less than that of the matrix alloy. However, the volume loss is greater in 6061Al/Al2O3 composites when compared to 7075Al/SiC composites. The temperature rise near the contact surface of the MMC specimens increases with increase in wt.% of reinforcement and applied load. The coefficient of friction decreases with increase in load in both cases.  相似文献   

2.
Aluminum (Al) alloy 7075 reinforced with Al2O3 particles was prepared using the stir casting method. The microstructure of the cast composites showed some degree of porosity and sites of Al2O3 particle clustering, especially at high-volume fractions of Al2O3 particles. Different squeeze pressures (25 and 50 MPa) were applied to the cast composite during solidification to reduce porosity and particle clusters. Microstructure examinations of the squeeze cast composites showed remarkable grain refining compared with that of the matrix alloy. As the volume fraction of particles and applied squeeze pressure increased, the hardness linearly increased. This increase was related to the modified structure and the decrease in the porosity. The effect of particle volume fraction and squeeze pressure on the dry-sliding wear of the composites was studied. Experiments were performed at 10, 30, and 50 N with a sliding speed of 1 m/s using a pin-on-ring apparatus. Increasing the particle volume fraction and squeeze pressure improved the wear resistance of the composite compared with that of the monolithic alloy, because the Al2O3 particles acted as load-bearing constituents. Also, these results can be attributed to the fact that the application of squeeze pressure during solidification led to a reduction in the porosity, and an increase in the solidification rate, leading to a finer structure. Moreover, the application of squeeze pressure improved the interface strength between the matrix and Al2O3 particles by elimination of the porosity at the interface, thereby providing better mechanical locking.  相似文献   

3.
Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir processing (FSP). Microstructures of both the surface hybrid composites revealed that SiC, Gr and Al2O3are uniformly dispersed in the nugget zone (NZ). It was observed that the addition of Gr particles rather than Al2O3 particles with SiC particles, decreases the microhardness but immensely increases the dry sliding wear resistance of aluminum alloy 6061-T6 surface hybrid composite. The observed microhardness and wear properties are correlated with microstructures and worn micrographs.  相似文献   

4.
A novel two step mixing method including injection of particles into the melt by inert gas and stirring was used to prepare aluminum matrix composites (AMCs) reinforced with Al2O3 particles. Different mass fractions of micro alumina particles were injected into the melt under stirring speed of 300 r/min. Then the samples were extruded with ratios of 1.77 or 1.56. The microstructure observation showed that application of the injection and extrusion processes led to a uniform distribution of particles in the matrix. The density measurements showed that the porosity in the composites increased with increasing the mass fraction of Al2O3 and stirring speed and decreased by extrusion process. Hardness, yield and ultimate tensile strengths of the extruded composites increased with increasing the particle mass fraction to 7%, while for the composites without extrusion they increased with particle mass fraction to 5%.  相似文献   

5.
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η (MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.  相似文献   

6.
In this study, Al/Al2O3/WC composites were fabricated via the accumulative roll bonding (ARB) process. Furthermore, the microstructure evolution, mechanical properties, and deformation texture of the composite samples were reported. The results illustrated that when the number of cycles was increased, the distribution of particles in the aluminum matrix improved, and the particles became finer. The microstructure of the fabricated composites after eight cycles of the ARB process showed an excellent distribution of reinforcement particles in the aluminum matrix. Elongated ultrafine grains were formed in the ARB-processed specimens of the Al/Al2O3/WC composite. It was observed that as the strain increased with the number of cycles, the tensile strength, microhardness, and elongation of produced composites increased as well. The results indicated that after ARB process, the overall texture intensity increases and a different-strong texture develops. The main textural component is the Rotated Cube component.  相似文献   

7.
Al5Mg alloy matrix composites reinforced with different percentages of Al2O3 (60 μm) or C (90 μm) particulates were prepared by the vortex method. The composites were then subjected to hot or cold rolling with different reduction ratios. The microstructures of the rolled composites revealed that the matrix grains moved around the particulate causing deformation. By continuing deformation, the particulates rearranged themselves in the matrix, leading to lensoid distortion. It was found that the addition of Al2O3 or C particulates increased the 0.2% proof stress and reduced both the tensile strength and ductility, compared with the monolithic alloy. Scanning electron microscopy (SEM) fractographic examinations showed that the composites reinforced with Al2O3 particulates failed through particulate fracture and matrix ligament rupture. However, the failure of the composites reinforced with C particulates was through particulate decohesion, followed by ductile failure of the matrix. Abrasive wear results showed that the wear rate of the Al5Mg alloy decreased with the addition of C particulates. However, increasing the volume fraction of C particulates did not have a prominent effect on the wear rate. The composites reinforced with Al2O3 particulates exhibited a higher wear rate than that of the unreinforced alloy. Furthermore, addition of both C and Al2O3 particulates into the Al5Mg matrix alloy did not significantly improve the wear resistance. For all composites studied in this work, hot or cold rolling had a marginal effect on the wear results.  相似文献   

8.
Aluminum alloy 7075 (Al7075) and composites of Al7075 with different concentrations of graphite particles (Al7075-G) were synthesized from elemental powders by a milling process. Milled products were consolidated by pressureless-sintering followed by hot extrusion. The mechanical properties of the sintered specimens were evaluated by tension tests and hardness measurements. Variation of Zn and graphite contents and their effect on mechanical properties was characterized. The results obtained show that the yield strength (σy), the maximum strength (σmax) and the Vickers microhardness (μHV) were enhanced as a function of graphite particles content and milling time, but the elongation was reduced significantly in some cases.  相似文献   

9.
Abstract

The flow behaviour of aluminium alloy matrix composites containing Al2O3 and SiC particles is studied. A357 aluminium alloy was the matrix alloy common to both metal matrix composites (MMCs). Reinforcing particles were similar in shape and size (40 μm). Both MMCs were made by the stir casting process using parameters optimised so far as possible. The flowability of the MMCs was studied by measuring the fluidity of strips cast in a permanent mould. The results showed that the fluidity of both MMCs appeared to be reduced by increasing percentage addition of particles and further reduced by increasing times and temperature. It is proposed that much of this behaviour is not the result of the added reinforcing particles but the result of oxide films necessarily entrained by the stir casting process. The agglomeration of additions commonly seen in particulate MMCs is also attributed to the entrainment of clusters of additions as they enter the liquid through the surface oxide film.  相似文献   

10.
Al2O3 nanoparticles were prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/cyclohexane/ water W/O reverse microemulsion. The proper calcination temperature was determined at 1 150 ℃ by thermal analysis of the precursor products. The structures and morphologies of Al2O3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectra. The influences of mole ratio of water to surfactant on the morphologies and the sizes of the Al2O3 nanoparticles were studied. With the increase of surfactant content, the particles size becomes larger. The agglomeration of nanoparticles was solved successfully. And the formation mechanisms of Al2O3 nanoparticles in the reverse microemulsion were also discussed.  相似文献   

11.
The characteristic evaluation of aluminum oxide (Al2O3)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. Al2O3 composites with different CNT concentrations were synthesized. The electrical characteristic of Al2O3/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% Al2O3 (volume fraction). In the machining accuracy, many tangles of CNT in Al2O3/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of Al2O3/CNTs hybrid composites.  相似文献   

12.
The beneficial effect of dispersions of reactive-metal oxide particles on the adhesion of Cr2O3 and Al2O3 scales formed on heat-resisting alloys is wellknown. It has been shown that an Al2O3 dispersion in an alloy can improve the adhesion of a Cr2O3 scale, and it is of particular interest in assessing the various theoretical proposals for the effect to determine whether such a dispersion can affect the adhesion of an Al2O3 scale. In this investigation, a Co–10% Cr–1 % Al alloy was first internally oxidized to form an Al2O3 dispersion. This alloy was then aluminized so that on subsequent oxidation an Al2O3 scale developed. It was shown that the dispersion did indeed improve the scale adhesion. The implications of this result are discussed.  相似文献   

13.
Aluminum/alumina composites are used in automotive and aerospace industries due to their low density and good mechanical strength. In this study, compocasting was used to fabricate aluminum-matrix composite reinforced with micro and nano-alumina particles. Different weight fractions of micro (3, 5 and 7.5 wt.%) and nano (1, 2, 3 and 4 wt.%) alumina particles were injected by argon gas into the semi-solid state A356 aluminum alloy and stirred by a mechanical stirrer with different speeds of 200, 300 and 450 rpm. The microstructure of the composite samples was investigated by Optical and Scanning Electron Microscopy. Also, density and hardness variation of micro and nano composites were measured. The microstructure study results revealed that application of compocasting process led to a transformation of a dendritic to a nondendritic structure of the matrix alloy. The SEM micrographs revealed that Al2O3 nano particles were surrounded by silicon eutectic and inclined to move toward inter-dendritic regions. They were dispersed uniformly in the matrix when 1, 2 and 3 wt.% nano Al2O3 or 3 and 5 wt.% micro Al2O3 was added, while, further increase in Al2O3 (4 wt.% nano Al2O3 and 7.5 wt.% micro Al2O3) led to agglomeration. The density measurements showed that the amount of porosity in the composites increased with increasing weight fraction and speed of stirring and decreasing particle size. The hardness results indicated that the hardness of the composites increased with decreasing size and increasing weight fraction of particles.  相似文献   

14.
In order to improve the performance of molybdenum, the Mo/Al2O3 composites were prepared by using a hydrothermal method for the synthesis of the precursor powders and subsequent powder metallurgical processing. The morphologies of the composite powders and the microstructures and properties of the composites were investigated. Compared with the pure Mo powder, the grains of composite powders are smaller because of the existence of the fine Al2O3 particles. The results from the sintered composites show that the fine Al2O3 particles are evenly distributed in the Mo matrix and well bonded with the Mo matrix. With increasing Al2O3 content, all the values of the micro-hardness, compressive strength and flow stress at 0.08 strain are increased. The strengthening effect is more remarkable at elevated temperatures. At room temperature, the compressive strength and the flow stress at 0.08 strain of the composite with 40 vol.% Al2O3 are 1.67 and 2.01 times greater than those of pure molybdenum, respectively, while the values are up to 2.02 and 2.52 at 1100 °C.  相似文献   

15.
Highly densified alumina-iron aluminide (Al2O3-FeAl) composites consisting of ubiquitous elements were fabricated by using pulse current sintering technique under a certain uni-axial pressure. The solid-state sintering without melting FeAl was the highlight in this study. The mechanical properties of the Al2O3-FeAl composites were much greater than previously reported ones fabricated by reaction sintering technique. The poor wettability of FeAl against Al2O3 strongly influenced the mechanical properties and made it difficult to be highly densified Al2O3-FeAl composites by liquid phase sintering especially when volume fraction of FeAl to Al2O3-FeAl was high (>30.5 vol%). However, highly densified Al2O3-FeAl composites were obtained by solid-state sintering with control of Al2O3 grain size and sintering temperatures. It was concluded that highly controlled powder metallurgy made it possible to fabricate dense ceramic-metal (intermetallic) composites from the combination of materials having poor wettability.  相似文献   

16.
In this article, the effects of three different sizes of Al2O3 particles in the friction stir processing on grain size, cluster size, microstructure, and micro-hardness of as-cast magnesium alloy AZ91 were investigated. Moreover, the effects of two types of tool geometries and number of passes on the mentioned parameters were considered. Effect of mentioned parameters on microstructure, grain refinement, and micro-hardness profile in the friction stirred zone of the specimens was compared by as-cast received form and also friction stir processed (FSPed) specimens without particles. Microstructural characterization of the materials revealed reasonably uniform distribution of Al2O3 reinforcement and significant grain refinement. Hardness studies revealed that the incorporation of nano- and micro-size Al2O3 particulates in magnesium matrix led to a simultaneous increase in hardness.  相似文献   

17.
采用金属硝酸盐和甘氨酸做前驱体,通过溶胶-凝胶自蔓燃法和超声波辐射合成颗粒尺寸为38nm的Al2ZrO5纳米颗粒。制备过程包括均匀溶胶的形成、凝胶干燥和干燥凝胶的燃烧。在不同温度下,通过搅拌铸造制备Al2ZrO5含量分别为0.75%、1.5%和2.5%(体积分数)的纳米颗粒增强铝基复合材料。通过SEM和XRD对所制得的复合材料进行结构和相分析。通过评估材料的密度、硬度和抗压强度确定最佳的强化相含量和铸造温度。实验结果表明:Al2ZrO5纳米颗粒增强铝基复合材料的硬度和抗压强度得到提升,其最大值分别达到BHN61和900MPa。在850℃下制备的含有1.5%Al2ZrO5的复合材料具有最佳的力学性能。  相似文献   

18.
Al2O3–10TiC composite was synthesized by high energy ball milling followed by spark plasma sintering (SPS) process. Microstructure of the sintered composite samples reveals homogeneous distribution of the TiC particles in Al2O3 matrix. Effect of sintering temperature on the microstructure and mechanical properties was studied. The sample sintered at 1500 °C shows a measured density of 99.97% of their theoretical density and hardness of 1892 Hv with very high scratch resistance. These results demonstrate that powder metallurgy combined with spark plasma sintering is a suitable method for the production of Al2O3–10TiC composites.  相似文献   

19.
为探究双相增强体对铝基复合材料拉伸性能和断裂行为的影响,采用真空热压烧结工艺在580 ℃,30 MPa条件下保温10 min制备了FeCoCrNiAl高熵合金颗粒增强7075铝基复合材料(HEAp/Al),Ni-Co-P镀层修饰碳纤维增强7075铝基复合材料(CF/Al)和FeCoCrNiAl高熵合金颗粒及Ni-Co-P镀层修饰碳纤维混杂增强铝基复合材料(CF-HEAp/Al)。并对不同复合材料微观结构及拉伸性能进行分析表征及比较。结果表明:CF-HEAp/Al复合材料的屈服强度(YS)与极限拉伸强度(UTS)随纤维含量的升高(体积分数由0至40%)呈现先增大后降低的变化,延伸率则逐渐降低。鉴于Ni-Co-P镀层修饰碳纤维与FeCoNiCrAl高熵合金颗粒的混杂强化效应, CF-HEAp/Al复合材料的YS和UTS较HEAp/Al与CF/Al复合材料明显提高,且其断口表现出基体韧性断裂及纤维拔出与断裂的多种失效特征。  相似文献   

20.
TaC-Al2O3 composites were prepared by hot pressing. Influence of Al2O3 content ranging from 10 to 40 vol. % on densification, phase composition, microstructure, mechanical properties and oxidation behavior of the TaC-Al2O3 composites was investigated. With 30 and 40 vol. % Al2O3 addition a closed porosity was achieved. The Al2O3 particles were uniformly distributed among TaC grains retarding grain growth and resulting in refined microstructures with grains below 2 μm in size. The most densified composite with 40 vol. % Al2O3 addition exhibited good mechanical properties with a Vickers’ hardness of 17.8 GPa, a flexural strength of 485 MPa and a fracture toughness of 5.4 MPa·m1/2. After holding at 700°C for 3 h in air, the dense 30 and 40 vol. % Al2O3 compositions showed hardly noticeable and mainly surface oxidation, whereas less densified TaC-Al2O3 composites with 10 and 20 vol. % Al2O3 content and with open porosity were disintegrated to powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号