共查询到15条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
基于中心矩特征的空间目标识别方法 总被引:1,自引:0,他引:1
目标的雷达散射截面(RCS)包含了丰富的目标类别信息,有效地利用目标RCS特征对空间目标的雷达识别具有重要的意义。该文利用空间目标回波的距离维信号来进行识别。中心矩特征具有平移不变性,是一种简单有效的波形特征提取算法。文中首先提取中心矩作为特征向量,再采用Fisher判据进一步进行特征压缩,最后利。用支撑矢量机(SVM)分类算法实现识别。基于实测数据的仿真实验结果表明,该方法具有较好的识别性能和推广能力。 相似文献
6.
7.
在雷达目标识别中,利用核主分量分析(KPCA)方法来进行目标特征提取,忽略了高分辨率距离像(HRRP)的本身特性。提取一种平移不变特征-中心矩作为特征向量,采用KPCA进行特征降维;由于BP神经网络易陷入局部极小,采用遗传算法(GA)对BP网络节点权值和阀值进行优化选择。基于雷达实测数据的实验结果表明:平移不变的KPCA特征提取方法实现了平移不变和降维的结合,同时,利用GA优化BP神经网络提高了分类器稳定性改善易陷入局部最小的缺陷,提高了雷达目标识别的性能。 相似文献
8.
卷积神经网络通过卷积和池化操作提取图像在各个层次上的特征进而对目标进行有效识别,是深度学习网络中应用最广泛的一种。文中围绕一维距离像雷达导引头自动目标识别,开展基于卷积神经网络的目标高分辨距离像分类识别方法研究。首先,基于空中目标一维距离像姿态敏感性仿真生成近似平行交会条件下不同类型目标的高分辨距离像数据集;其次,构建一种一维卷积神经网络结构对目标高分辨距离像进行分类识别;作为比较,针对同类高分辨距离像数据集,分析了主成分分析-支持向量机方法的目标分类识别效果。结果表明:基于卷积神经网络的目标分类识别算法有更好的识别能力,对高分辨距离像的姿态敏感性具有较强的适应性。 相似文献
9.
10.
11.
12.
用改进核函数提高SVM的雷达目标识别率 总被引:5,自引:1,他引:4
对支持向量机中的高斯核进行了改进,利用改进的高斯核构造了一维高分辨率距离像的雷达目标识别算法,并将幂变换引入预处理过程.该技术提高了识别率,减少了识别时间;同时对所完成的目标识别算法的性能进行了评估,从方位角大小、信噪比和训练数据大小三个方面验证了该算法的稳健性. 相似文献
13.
14.