首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
开展Mn+(Fe2+、Fe3+、Co2+、Cu2+),H2O2型高级氧化体系对活性黑染料KN-B的氧化脱色研究.发现实验条件下经典Fenton体系(Fe2+/H2O2)对KN-B脱色效果随酸性增强、反应时间延长、反应温度升高和初始染料浓度降低增加;在pH=7,T=25℃,KN-B、H2O2与催化剂Fe3+初始浓度比例为1:5:1.6时,100min脱色率可达96.60%.分别进行pH=3,7和10条件下Fe3+/H2O2、Co2+/H2O2、Cu2+/H2O2体系对KN-B的脱色研究,结果表明与Fe3+/H2O2高级氧化体系相比,Co2+/H2O2体系脱色效果不明显,而Fe3+/H2O2和Cu2+/H2O2分别在中性和碱性条件下可在短时间内达到更高的脱色率.初始pH=7,50 min后Fe3+/H2O2体系脱色率可达98%以上,该体系更适于KN-B氧化脱色.  相似文献   

2.
利用FeCl3.6H2O作为无机絮凝剂和H2O2作为氧化剂对活性蓝染料废水进行了脱色实验。通过改变pH、絮凝剂的用量和高分子电解质的种类,寻求最佳的反应条件。实验结果表明,FeCl3.6H2O的浓度为100 mg.L-1,废水的pH=7时,可以达到100%的脱色效果。同时,阳离子型高分子电解质能有效的增加絮凝剂的脱色效率。当Fe(II)和H2O2在最佳的摩尔比条件下,其初始浓度对脱色率也会产生一定的影响。  相似文献   

3.
草酸铁法处理亚麻染色废水的研究   总被引:1,自引:0,他引:1  
采用草酸铁法对亚麻染色废水进行了COD去除和脱色的研究.当pH=3.5,H2O2质量浓度为900mg/L,[K2C2O4]=[FeSO4]=1 mmol/L,水力停留时间为30 min时,亚麻染色废水的COD去除率和脱色率分别达到83%和99%以上;光照强度增大有利于亚麻染色废水的COD去除率和脱色率的提高;试剂加入次序不同对COD去除和脱色效果影响不大.结果表明:草酸铁法处理亚麻染色废水在技术上是可行的,处理效果良好稳定,出水COD平均值为73 mg/L,出水色度平均值为9.6倍,远低于我国纺织染整工业水污染物排放标准.  相似文献   

4.
在紫外光照射下,用过氧化氢对罗丹明B进行光催化脱色,研究了无机酸、pH值、H2O2浓度、光解时间对光催化脱色效果的影响。实验结果表明,过氧化氢光催化氧化20mg/L的RB溶液脱色的最佳条件为:用HCl调节溶液pH=2,H2O2浓度为97.63mmol/L,光解时间为15min。此时,罗丹明B脱色率可达98%以上。  相似文献   

5.
以自制生物高分子金属配合物CG为催化剂,与H2 O2共同构建类芬顿催化体系,对酸性大红GR模拟染料废水脱色处理.结果表明,对于0.1g/L的酸性大红GR模拟染料废水,最佳脱色工艺条件为:催化剂CG用量为0.5g/L,30%H2 O2用量6mL/L,脱色温度为50℃,脱色时间为25min;该体系在较宽的pH范围内对酸性大红GR模拟染料废水均有良好的脱色效果;废液中盐的存在能够提高该催化体系对染料废水的脱色速率,降低脱色温度,缩短脱色时间.  相似文献   

6.
开展Mn+(Fe2+、Fe3+、Co2+、Cu2+)/H2O2型高级氧化体系对活性黑染料KN-B的氧化脱色研究。发现实验条件下经典Fenton体系(Fe2+/H2O2)对KN-B脱色效果随酸性增强、反应时间延长、反应温度升高和初始染料浓度降低增加;在pH=7,T=25℃,KN-B、H2O2与催化剂Fe2+初始浓度比例为1∶5∶1.6时,100 min脱色率可达96.60%。分别进行pH=3,7和10条件下Fe3+/H2O2、Co2+/H2O2、Cu2+/H2O2体系对KN-B的脱色研究,结果表明与Fe2+/H2O2高级氧化体系相比,Co2+/H2O2体系脱色效果不明显,而Fe3+/H2O2和Cu2+/H2O2分别在中性和碱性条件下可在短时间内达到更高的脱色率。初始pH=7,50 min后Fe3+/H2O2体系脱色率可达98%以上,该体系更适于KN-B氧化脱色。  相似文献   

7.
以硅藻土为载体,硝酸铁为Fe源制备了Fe/硅藻土催化剂材料.研究了Fe/硅藻土催化剂与H2 O2组成的非均相Fenton体系对亚甲基蓝染料废水的处理效果及影响因素.实验结果表明,Fe/硅藻土催化剂与H2 O2组成的非均相Fenton体系对染料废水中亚甲基蓝具有较好的降解效果.在催化剂投加量为1.6 g/L,H2 O2加入量为0.2 mol/L,溶液体系pH值为3.0,反应温度为30℃,反应时间为60 min的条件下处理10 mg/L亚甲基蓝溶液,亚甲基蓝的脱色率可达92.5%.  相似文献   

8.
负载TiO2工程化光催化水处理器降解活性黑GR实验研究   总被引:2,自引:0,他引:2  
采用复合镀工艺制备负载纳米TiO2的三维镍网,研究开发出已实际工程应用的光催化水处理器,并模拟在不同条件下,对活性黑GR溶液进行降解脱色实验研究,获得最佳的实际工程工艺条件和参数.实验表明,UV/镍网/TiO2组合模式对活性黑的降解效果最佳,在240 min内脱色率能达到94.76%.活性黑溶液的脱色率随初始质量浓度的增大而减小,当质量浓度为20 mg/L时,降解效果最佳,处理240 min脱色率能达到98.35%;活性黑溶液pH=5时,脱色率能达到94.2%;投加1 g/L H2O2增强了光催化降解效率,在150 min内,脱色率能达到98.6%.  相似文献   

9.
采用四种氧化技术:1.H_2O_2;2.芬顿;3.H_2O_2+紫外线;4.光芬顿;对常用染料直接耐酸大红4BS和甲基橙进行脱色研究。结果表明,光芬顿脱色效果最好,在10 min时,大红4BS和甲基橙脱色率分别高达99.56%和95.88%;H_2O_2(30%)投加量为0.2 mL时,大红4BS最适Fe~(2+)浓度为1 mg/L,甲基橙最适Fe~(2+)浓度为2 mg/L;中性有利于大红4BS降解,弱酸弱碱有利于甲基橙降解;实验比较了254 nm、308nm和365 nm三种紫外光源,发现254 nm紫外线对两染料降解最好。并对两染料进行了光谱分析。  相似文献   

10.
高级芬顿反应处理染料废水的影响因素及工艺条件优化   总被引:6,自引:0,他引:6  
通过实验分析高级芬顿体系处理染料废水的影响因素,并获得优化的工艺条件.结果表明各种因素对评价指标的影响顺序不同,但过氧化氢的影响始终是最大的.对COD去除的优化工艺为:H2O2浓度为300 mg/L,Fe^2+浓度20 mg/L,H2C2O4浓度为15 mg/L,pH为3.0,时间为40 min.对TOC去除的优化工艺为:H2O2浓度为300 mg/L,Fe^2+浓度20 mg/L,H2C2O4浓度为20 mg/L,pH为3.0,时间为60 min.在优化的工艺条件下能有效的降解3种染料,降解速率顺序为GR>X3-B>KN-R.处理后的废水COD去除率可达到80%,TOC去除率达到70%.  相似文献   

11.
采用超声辅助反向共沉淀法制备了高活性的Fe3O4磁性纳米颗粒(Fe3O4MNPs).采用XRD,FT-IR和Raman等仪器对Fe3O4MNPs的组成、结构进行了表征和研究.以Fe3O4MNPs为类酶催化剂,Na2S2O8为氧化剂,在室温25℃的条件下,降解对硝基酚的优化条件为:10 mg.L-1对硝基酚溶液,在pH=3.8,Fe3O4MNPs用量为0.9 g.L-1,Na2S2O8用量为6.3 mmol.L-1时,无需超声、紫外光照和Gamma辐射的条件下,30 min后其降解率达到97%以上.  相似文献   

12.
本文首先以SnCl2·2H2O为主要原料,无水乙醇为溶剂,利用溶剂热法于180℃反应24h得到了SnO2微球;再以所制备的SnO2微球为前驱体,FeCl3·6H2O为主要原料,通过水热法得到SnO2/Fe2O3复合材料.利用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)对所得产物进行了表征.结果表明:所得的SnO2为四方锡石型,形貌为微球,平均直径约为2.0μm;复合后得到的SnO2/Fe2O3微球平均直径约为2.5μm.其中,Fe2O3为六方赤铁矿型,在复合物的表面以小颗粒的形式存在,尺寸约为200nm.另外,也对SnO3与SnO2/Fe2O3微球的形成过程进行了讨论.  相似文献   

13.
为了简化装置结构、降低仪器成本、提高分析系统的稳定性和抗干扰能力,推出一种全新的负压式双管线流动注射离子选择电极分析方法,并对该方法相关的载液组成及流量、载流酸度调节液的组成及流量,反应盘管长度等进行了优化,最后将其成功用于血清K+、Na+、Cl-、Ca2+的同时测定。方法的相对标准偏差<1.3%(n=11),回收率为96%~104%,分析速度为480检出/h,样品耗量仅为45μL/次;对血清K+、Na+、Cl-、Ca2+的同时测定范围分别是2.0~24.0、102~252、20~300、0.70~8.0 mmol.L-1,此测定范围涵盖了正常人血清中的电解质浓度。  相似文献   

14.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

15.
为了解Fe2(SO4)3作为絮凝剂对活性污泥中微生物活性的影响,向活性污泥系统中投加质量浓度为20、40、60、80,100 mg·L-1的Fe2(SO4)3,反应4 h后测定活性污泥的脱氢酶活性、比耗氧速率(RSOU)、胞外聚合物(EPS)及各组分含量,同时测定系统出水的COD等各项指标.结果表明:Fe2(SO4)3质量浓度在20~60 mg·L-1时对活性污泥的脱氢酶活性、RSOUEPS及各组分含量影响均不大,此时污水中COD、TP、UV254等污染物随Fe2(SO4)3质量浓度增加而有较大幅度去除.Fe2(SO4)3质量浓度为80 mg·L-1时,污泥的脱氢酶活性、RSOU、总EPS含量均明显下降.当Fe2(SO4)3质量浓度增加到100 mg·L-1时,污泥的脱氢酶活性、RSOU进一步受到抑制,而总EPS含量则大幅度提升.此时污水中COD、TP、UV254等污染物去除率增加幅度变缓,SCOD及NH3-N去除作用有所下降.  相似文献   

16.
硫酸铝浸渍活性氧化铝球(AIAA)是饮水除氟领域常用的吸附剂,它对氟的吸附性能受各种因素的影响。静态吸附通过改变AIAA质量与氟溶液体积比(m(AIAA):V)(2~40 g.L-1)、氟的质量浓度(ρ(F))(2~100 mg.L-1)、pH值(4~10)、温度(11~33℃)和时间等实验参数,研究这些因素对AIAA吸附除氟的影响。在11~33℃的温度范围内、pH值变化为4~10之间时,当m(AIAA):V为20 g.L-1,3 h内处理ρ(F)为10 mg.L-1水溶液其氟的去除率可达90%以上,足以保证其满足饮用水的含氟标准。利用Langmuir和Freundlich模型对吸附数据进行了拟合研究,结果表明:在ρ(F)为2~100 mg.L-1、pH=5~10、温度11~33℃范围内,Langmuir线性拟合模型是最优拟合方式;而当溶液氟质量浓度为2~1 000 mg.L-1或2~100 mg.L-1且pH为4时,Freundlich非线性拟合模型是最优拟合方式。AIAA吸附容量随溶液氟质量浓度升高、pH降低及温度升高逐渐增加。  相似文献   

17.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

18.
采用湿化学共沉淀法,通过在TiO2颗粒表面包覆Sb掺杂SnO2(ATO)制备ATO/TiO2导电粉.运用TG-DSC、XRD、XPS、SEM、BET和电导率等手段对ATO/TiO2导电粉进行了表征.研究结果表明:锡锑混合物xSn(Sb)O2·yH2O以非晶态的形态靠范德华力与静电引力吸附在TiO2表面,煅烧过程中,xSn(Sb)O2·yH2O脱去结晶水吸附或鍵合在TiO2表面.随着TiO2颗粒表面包覆层ATO厚度逐渐增加,ATO/TiO2粉体的电导率逐渐增加.  相似文献   

19.
以EDTA-2Na为螯合剂,NiCl2·6H2O和Na2S2O3·5H2O为反应物,在不同pH下,水热合成不同形貌的NiS2。利用X射线衍射仪、扫描电子显微镜、激光粒度分布仪、全自动微机差热仪对NiS2进行表征。在不同条件下对LiSi/NiS2体系单体电池进行了放电测试。结果表明,在酸性条件(pH=1、4)下产物形貌均为近立方体型,中性条件(pH=7)下产物均为球形,在碱性条件(pH=9、11)产物呈片状。颗粒尺寸随pH增加先增大后减小,NiS2最高分解温度比FeS2高60℃,近立方体型NiS2的放电性能最好。NiS2锂化后有效消除了电压尖峰,提高了放电电压的稳定性。  相似文献   

20.
氨基化丙烯酸基磁性树脂对Cu^2+的吸附特性   总被引:2,自引:0,他引:2  
以N,N-亚甲基双丙烯酰胺为交联剂,利用悬浮聚合法制备聚丙烯酸甲酯磁性树脂(RM),并经乙二胺改性后制得一种新型磁性吸附剂(RMA)。采用差热/热重分析(DTA/TGA)以及红外光谱等对其进行了表征,并考察了它对Cu^2+的吸附性能。结果表明,RMA树脂粒径30~60btm,FesOt质量分数为6.7%,对Cu^2+的吸附等温线符合Langmuir模型,饱和吸附容量2.13mmol/g,高于未改性树脂(RM,1.15mmol/g)。吸附动力学可用拟二级反应模型拟合。热力学分析表明RMA对Cu^2+的吸附过程能自发进行,焓变为-17.88kJ/mol,熵变为-2.06J/(mol·K),Bibbs自由能为-17.26~-17.19kJ/mol。吸附剂用1mol/LHCl洗脱再生,脱附率高于97%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号