首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Grey relational analysis is carried out to develop a new approach for optimization of Nd:YAG laser and gas metal arc hybrid welding parameters. The qualities of a welded material depend on various welding parameters. The parameters chosen for the current study include wire type, shielding gas, laser power, laser focus, travelling speed and wire feedrate. The welding experiments are performed on 6K21-T4 Al alloy sheet which are mostly used in automotive industries. The ultimate tensile stress, the bead width, and the penetration are chosen as the criterion for optimising the welding parameters. The method based on an orthogonal array following Taguchi's recommendation is adopted in the present study. Based on the results of grey relational analysis, a set of optimal welding parameters are obtained. The results show that the optimal welding parameters determined by the grey relational analysis are much improved compared to those from the preliminary set of experimental parameters.  相似文献   

2.
In the manufacture of high-quality welds or pipeline, a full-penetration weld has to be made along the weld joint. Therefore, root-pass welding is very important, and its conditions have to be selected carefully. In this study, an experimental method for the selection of optimal welding conditions is proposed for gas tungsten arc (GTA) pulse welding in the root pass which is done along the V-grooved butt-weld joint. This method uses response surface analysis in which the width and height of back bead are chosen as quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, is used as the objective function to obtain the optimal welding conditions. In our experiments, the target values of back bead width and height are 4 mm and zero, respectively, for a V-grooved butt-weld joint of a 7-mm-thick steel plate. The optimal welding conditions could determine the back bead profile (bead width and height) as 4.012 mm and 0.02 mm. From a series of welding tests, it was revealed that a uniform and full-penetration weld bead can be obtained by adopting the optimal welding conditions determined according to the proposed method.  相似文献   

3.
基于田口法的钛合金微电阻点焊焊接参数优化   总被引:1,自引:1,他引:0       下载免费PDF全文
为了获取最优的钛合金点焊接头性能,选取了焊接时间、焊接电流和电极压力为影响焊点性能的工艺参数,对厚度为0.4 mm的TC2钛合金进行焊接试验. 以焊点熔核直径、焊点拉剪试验中的最大拉剪力、最大位移值与失效能量值作为表征焊点性能优劣的指标. 采用灰色关联分析将多个表征焊点性能的指标转换为一个综合评判焊点质量的灰色综合关联度. 通过方差分析获得了使焊点质量达到最优的焊接工艺参数组合. 结果表明,综合利用灰色关联分析法与田口试验法优化微电阻点焊焊点质量的方法是有效的,可以应用于实际生产中.  相似文献   

4.
This paper presents the results obtained by the optimization of laser bead on plate welding parameters for 3.5 kW cooled slab laser using Taguchi technique. The trials were conducted on two different shielding gases 100% Nitrogen and 50% Nitrogen + 50% Argon. The input process parameters such as beam power, travel speed and focal position are selected suitably in order to obtain the desired output i.e., bead width and depth of penetration. The quality of the weld is evaluated by studying the features of weld bead geometry. Grey relational analysis is applied to optimize the input parameters simultaneously considering multiple output variables. In this investigation the nearest optimal solution which would improve the weld quality was found out. Experimental trial on super austenitic stainless steel has been conducted to validate the optimized parameters. Further, the optimized parameters were evaluated through the microstructural characterization and hardness measurements across the weld zone.  相似文献   

5.
This paper presents the development of a back propagation neural network model for the prediction of weld bead geometry in pulsed gas metal arc welding process. The model is based on experimental data. The thickness of the plate, pulse frequency, wire feed rate, wire feed rate/travel speed ratio, and peak current have been considered as the input parameters and the bead penetration depth and the convexity index of the bead as output parameters to develop the model. The developed model is then compared with experimental results and it is found that the results obtained from neural network model are accurate in predicting the weld bead geometry.  相似文献   

6.
The formation of stable back beads in a root pass weld during one side multi-layer welding is important to achieve high quality welded metal joints in MAG welding. The authors employed the switch back welding method for V groove joints without backing plates. In this switch back welding method, the torch moves forward and backward with an oscillation frequency of 2.5 Hz. In order to achieve this welding, personal computers control the conventional welding robot, the power source characteristic and the wire feeder unit. During the forward, the torch is weaving on the V groove gap without the weld pool. If the weaving width becomes wider than the proper width, the tip of the wire becomes high and a good back bead cannot be obtained. The weaving width is adjusted so as to get the proper width in the switch back welding. The suitability of the welding conditions for each root gap was verified by observation of the arc, the weld pool and the external appearance of back beads. A good back bead was obtained under V groove welding in 2–4 mm gap.  相似文献   

7.
双细丝埋弧焊+陶瓷衬垫可用于无间隙装配、坡口内定位焊、背面应用陶瓷衬垫+正面大能量输入的双细丝单面埋弧焊焊接,焊缝正反面一次成形.双细丝埋弧焊是利用单电源单送丝机送出两条具有一定距离的并联细丝,在保持大能量输入同时,把焊接电流进行分流,从而降低电弧能量过多集中于中坡口根部的问题.由于细焊丝干伸长度电阻热增加,焊丝熔化速度加快;电极之间电弧辐射热相互作用,能量利用率高,熔滴过渡更细,焊接过程更平稳,焊缝成形更美观;对于板厚12~18 mm,可大幅度提高焊接效率10倍以上,焊接质量稳定,应用前景良好.  相似文献   

8.
To investigate influence of welding parameters on weld bead geometry in underwater wet flux cored arc welding (FCAW), orthogonal experiments of underwater wet FCAW were conducted in the hyperbaric chamber at water depth from 0.2 m to 60 m and mathematical models were developed by multiple curvilinear regression method from the experimental data. Sensitivity analysis was then performed to predict the bead geometry and evaluate the influence of welding parameters. The results reveal that water depth has a greater influence on bead geometry than other welding parameters when welding at a water depth less than 10 m. At a water depth deeper than 10 m, a change in travel speed affects the bead geometry more strongly than other welding parameters.  相似文献   

9.
Generally, the quality of a weld joint is strongly influenced by process parameters during the welding process. In order to achieve high quality welds, mathematical models that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models for the selection of process parameters and the prediction of bead geometry (bead width, bead height and penetration) in robotic GMA (Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.  相似文献   

10.
Weld bead morphology plays an important role in welding procedure specification and welding process planning. In order to obtain the quantitative relationship between process parameters and weld morphology of DH36 marine steel plate, grey correlation method was used to study multiple morphology characteristics simultaneously. Eighteen experimental runs were proposed according to orthogonal method. With grey correlation theory, three response objectives, aspect ratio, depth of penetration and weld were transformed into a single grey correlation grade(GRG). The process parameters were quantitatively correlated to the GRG value and optimized with the target of maximum aspect ratio, minimum depth of penetration and maximum weld area. The results show that the optimized weld bead morphology is better than other weld bead morphology. The relative error of the predicted GRG with respect to the actual value is 5.06%, which further verifies the accuracy of the established model. The microstructure and hardness analysis suggests that the optimized welded joint has obtained required mechanical properties.The research outcomes provide a theoretical basis for multi-objective optimization of arc welding morphology in practical applications.  相似文献   

11.
基于中厚板打底焊接存在着自动化程度及效率低的问题,采用脉冲熔化极气体保护焊-钨极氩弧焊(MAG-TIG)双电弧热源焊接对板厚为24 mm的Q235-B进行打底焊接单面焊双面成形工艺研究及机制分析. 结果表明,脉冲MAG-TIG双电弧热源打底焊接时,利用TIG电弧与MAG电弧间的电磁力来调节MAG电弧在熔池前端的加热位置,使得一部分电弧热量直接作用于钝边上;结合焊接电弧放电行为与熔池流动分析发现,打底成形稳定性最佳时,利用TIG电弧与熔池的剪切力使得液态金属向后方流动,熔池前端底部液态金属减少,易于平衡稳定,可获得熔透均匀、连续、稳定的打底焊缝背面成形.  相似文献   

12.
在16Mn钢板上进行双丝自动埋弧焊工艺试验,得到了不同焊接速度下的焊件.对不同工艺参数下得到的焊接接头试样进行了拉伸试验、硬度测试以及金属显微组织观察,并计算了双丝自动埋弧焊时的熔敷率.结果表明:采用双丝埋弧焊得到的焊缝外形美观;金属熔敷率与焊接速度成反比;随着焊接速度的降低焊接线能量相应的增大,较长的高温停留时间会促...  相似文献   

13.
This study performed three-dimensional transient numerical simulations using the volume of fluid method in a gas metal arc V-groove welding process with and without root gap for flat, overhead, and vertical welding positions. The elliptically symmetric arc models for arc heat flux, electromagnetic force and arc pressure were used to describe the more accurate molten pool behaviors. The numerical models not only formed a stable weld bead but also simulated the dynamic molten pool behaviors such as overflow which was not described before. This study analyzed these molten pool flow patterns for various welding positions and validated the numerical models used by comparing the simulation results with experimental ones.  相似文献   

14.
高强钢旁路热丝等离子弧打底焊接头组织和性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用旁路热丝等离子弧焊接工艺进行高强钢Y形坡口的打底焊,该工艺有效结合了等离子弧穿透能力强、电弧热丝熔敷效率高、旁路分流热输入可控的技术优势,对中厚高强钢板实现单面焊接双面成形. 结果表明,正面焊缝成形美观,无焊接缺陷;背面焊缝轻微突出,厚板完全焊透;经过反复的受热冷却,打底焊焊缝的微观组织得到细化.力学性能分析得出,热影响区硬度最低,焊缝区略高于母材区;打底焊焊缝的硬度高于填充焊和盖面焊;拉伸断裂发生在母材区,断口扫描出现韧窝,为韧性断裂.  相似文献   

15.
Abstract

The formation of stable back beads in the first layer weld during one side multilayer welding is important to achieve high quality welded metal joints. The authors thus employed the switch back welding method for welding V groove joints without using backing plates. Moreover, in the field work, there is misalignment of both metal plates during set-up. The suitability of the welding conditions for each root gap and the misalignment were verified by observation of the arc, molten pool and external appearance of back beads. Welding conditions, namely, welding current, wire feedrate, weaving width, forward/backward stroke of switch back motion and welding speed, were controlled continuously according to root gap variations. Stable back beads were obtained for root gaps between 4.9 and 2.3 mm and misalignments between 0.1 and 2.8 mm.  相似文献   

16.
介绍了一种新型的应用于风力发电塔架制造过程中的无清根全熔透焊接工艺技术,该焊接工艺方法是通过改变坡口角度、筒体成形、外侧坡口打底、内侧埋弧自动焊、外侧埋弧自动焊等工艺步骤来实现的。规避了传统的碳弧气刨清根焊接方法因焊缝重复受热而导致的构件变形和焊件晶粒尺寸变大、强度降低等缺陷,并且气刨后的焊接坡口形状很不规则,这也使得构件的焊接质量难以保证。  相似文献   

17.
One of the versions of the plasma–metal inert gas (MIG) process is basically a combination of a plasma arc with a MIG/metal active gas (MAG) arc in a single torch. With this association, the advantages of each arc are combined. The main characteristic of this is the independence between the heat input by the process and the deposited material, resulting in greater facility to control bead weld geometry. In the current literature, there is a shortage of information related to the process, and most of this goes back to the 1970s and 1980s when the technology available was not able to make the process viable for industry. However, in recent years, the use of the diffusion of new electronic power sources used in welding has sparked up again the interest in plasma–MIG process. In this context, this paper aims to contribute to the studies related to the influence of the MIG and plasma current balance on the geometry of the bead weld and wire fusion rate. Bead-on-plate welds were carried out with plasma and MIG/MAG current combinations at three levels each, keeping, by welding speed corrections, the bead volume the same. It was observed that the introduction of the plasma current over the MIG/MAG current reduces penetration and dilution and leads to convex beads. On the other hand, the use of plasma current increases the MIG/MAG wire fusion rate. However, it seems that the intensity of the plasma current is not the governing parameter of those changes.  相似文献   

18.
Abstract

In gas metal arc (GMA) welding, the weld size, that is, the locally melted area of a workpiece, is one of the most important factors determining the strength of a welded structure. Variations in the welding power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In the present study, a model that can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. To analyse the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to horizontal fillet joints. A heat flow analysis was performed using a two-dimensional finite element model that was adopted to compute the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was highly effective in predicting the weld bead shape, and that the predicted melting zone of the base metal also corresponded well with the experimental profile.  相似文献   

19.
基于支持向量机的焊缝尺寸预测   总被引:1,自引:1,他引:0       下载免费PDF全文
焊缝尺寸是决定焊接接头强度及有关性能的重要因素,因此也是焊接质量控制的重要内容.分别以焊接电流、电弧电压以及焊接速度作为输入向量构造样本集,建立CO2焊接焊缝尺寸支持向量机模型,分别运用线性核函数,多项式核函数、高斯径向基核函数以及指数径向基核函数对焊缝熔宽、焊缝熔深以及焊缝余高进行预测.结果表明,采用指数径向基核函数所建立的支持向量机模型可以有效地对焊缝尺寸进行预测,为进一步实现焊缝质量的在线控制提供依据.  相似文献   

20.
脉冲双丝MAG焊接电流相位关系对成形的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
应用具有自由表面的流体稳定性理论,分析了焊接熔池失稳的产生机理,并对双丝共熔池MAG焊接脉冲电流不同相位关系对焊缝成形的影响进行了试验观察与分析.结果表明,双丝脉冲电流为同步相位时,电弧周期性的熄灭可以减少对熔池的加热量,防止熔池过长而失稳.双丝脉冲电流为交替相位关系时,主机与从机电弧交替出现,使熔池始终处于电弧的加热之下,热输入量大,熔化态金属的长度较长,产生驼峰焊道的可能性加大.双丝脉冲电流为随机相位时,主机、从机焊丝电弧时而同步燃烧或同步熄灭,时而交替燃烧与熄灭;同步熄灭时,熔池可及时冷却,交替燃烧与熄灭时,熔池始终处于电弧的加热之下,熔池难以及时冷却,因此焊缝表面不均匀.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号