首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We report a process of selective conversion of microcrystalline cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts. A 58.1% yield of hexitols and a 71.0% conversion of cellulose were achieved over Ru/SZSi(100:15)-773 catalyst at 443 K. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), BET, thermogravimetric analysis and pyridine adsorption Fourier transform infrared spectroscopy (FTIR). XRD results indicated that the sulfated catalysts were pure tetragonal phase of ZrO2 when calcined at 773 K. Monoclinic zirconia appeared at the calcination temperature of 873 K, and the content of monoclinic phase increased with the elevating temperature. Compared with sulfated zirconia catalyst, sulfated silica-zirconia catalysts possessed a higher ratio of Brønsted to Lewis on the surface of catalysts, as shown from pyridine adsorption FTIR results. The reaction results indicated that the tetragonal zirconia, which is necessary for the formation of superacidity, was the active phase to cellulose conversion. The higher amounts of Brønsted acid sites can remarkably accelerate the cellulose depolymerization and promote side reactions that convert C5–C6 alcohols into the unknown soluble degradation products.  相似文献   

2.
Ceria-promoted sulfated zirconia (CeSZ) was supported on mesoporous molecular sieve of pure-silica MCM-41 (abbreviated as CeSZ/MCM-41). It was prepared by direct impregnation of metal sulfate onto the as-synthesized MCM-41, followed by solid state dispersion and thermal decomposition. The resultant catalysts were characterized by TG, XRD, nitrogen physisorption and TEM. It was showed that the hollow tubular structure of MCM-41 was retained, even with ZrO2 loading as high as 60 wt.%. Most of CeSZ was well dispersed on the interior surface of the ordered mesopores, following a slight twist of the channels. The catalytic activity of CeSZ/MCM-41 was studied in the octadecanol oxidation. The improved performance of CeO2-promoted catalysts was attributed to the high dispersion of sulfated zirconia (SZ) and the introduction of CeO2 enhancing the oxidation ability of catalysts by retarding the transformation of zirconia from highly catalytic active metastable tetragonal phase to monoclinic phase.  相似文献   

3.
With metal sulfate as the precursor, the catalysts of sulfated zirconia on MCM-41, Al- and Ga-promoted sulfated zirconia on MCM-41 (named as SZ/MCM-41, ASZ/MCM-41 and GSZ/MCM-41, respectively) were prepared by direct dispersion in the as-synthesized MCM-41 materials, followed by thermal decomposition. The catalysts were characterized with various techniques such as XRD, FTIR, N2 adsorption, NH3-TPD, DRIFT, and TPR-MS. The ordered porous structure was still maintained in the catalysts. The addition of promoters helps to retard the phase transformation of ZrO2 from tetragonal phase to monoclinic phase. Isomerization of n-pentane was investigated over the catalysts. In comparison to SZ/MCM-41, both promoted catalysts showed much improved catalytic activity and selectivity for isomerization of n-pentane. Moreover, the catalytical activities of both promoted catalysts for pentane isomerization remained steady over the period of 180 min while the activities of the unpromoted catalyst decreased in <120 min. Characterization of acidity showed no significant difference in strength distributions of the acid sites over the catalysts. The nature of acid sites in SZ/MCM-41 was affected by the presence of aluminum, but not affected by the presence of gallium. On the other hand, TPR study shows sulfur on GSZ/MCM-41 is much easier to reduce than SZ/MCM-41 and ASZ/MCM-41. The presence of gallium improved the redox capability provided by the sulfate ions in GSZ/MCM-41 catalyst. The causes for the promotion effects of Ga and Al are discussed.  相似文献   

4.
A fundamental issue that remains to be solved when approaching the nanoscale is how the size induces transformation among different polymorphic structures. Understanding the size-induced transformation among the different polymorphic structures is essential for widespread use of nanostructured materials in technological applications. Herein, we report water adsorption and high-temperature solution calorimetry experiments on a set of samples of single-phase monoclinic zirconia with different surface areas. Essential to the success of the study has been the use of a new ternary water-in-oil/water liquid solvothermal method that allows the preparation of monoclinic zirconia nanoparticles with a broad range of (BET) Brunauer–Emmett–Teller surface area values. Thus, the surface enthalpy for anhydrous monoclinic zirconia is reported for the first time, while that for the hydrous surface is a significant improvement over the previously reported value. Combining these data with previously published surface enthalpy for nanocrystalline tetragonal zirconia, we have calculated the stability crossovers between monoclinic and tetragonal phases to take place at a particle size of 28 ± 6 nm for hydrous zirconia and 34 ± 5 nm for anhydrous zirconia. Below these particle sizes, tetragonal hydrous and anhydrous phases of zirconia become thermodynamically stable. These results are within the margin of the theoretical estimation and confirm the importance of the presence of water vapor on the transformation of nanostructured materials.  相似文献   

5.
An assessment of the influence of the crystal structure, surface hydroxylation state and previous oxidation/reduction pretreatments on the activity of sulfate-zirconia catalysts for isomerization of n-butane was performed using crystalline and amorphous zirconia supports. Different sulfation methods were used for the preparation of bulk and supported SO42−-ZrO2 with monoclinic, tetragonal and tetragonal+monoclinic structures. Activity was important only for the samples that contained tetragonal crystals. The catalysts prepared from pure monoclinic zirconia showed negligible activity. SO42−-ZrO2 catalysts prepared by sulfation of crystalline zirconia displayed sites with lower acidity and cracking activity than those sulfated in the amorphous state. Prereduction of the zirconia samples with H2 was found to greatly increase the catalytic activity, and a maximum rate was found at a reduction temperature of 550–600 °C, coinciding with a TPR peak supposedly associated with the removal of lattice oxygen and the creation of lattice defects. A weaker dependence of catalytic activity on the density or type of surface OH groups on zirconia (before sulfation) was found in this work.

A model of active site generation was constructed in order to stress the dependence on the crystal structure and crystal defects. Current and previous results suggest that tetragonal structure in active SO42−-ZrO2 is a consequence of the stabilization of anionic vacancies in zirconia. Anionic vacancies are in turn supposed to be related to the catalytic activity for n-butane isomerization through the stabilization of electrons from ionized intermediates.  相似文献   


6.
《Catalysis communications》2003,4(10):511-515
Gallium-promoted sulfated zirconia (GSZ) catalysts were prepared by impregnation of zirconium hydroxide with aqueous Ga2(SO4)2 followed by calcination. Isomerization of n-hexane was studied over GSZ at 150 °C, 2.0 MP, WHSV 2 and H2/hexane (molar) ratio of 5. In comparison to sulfated zirconia (SZ), the conversion of n-hexane over Gallium-promoted sulfated zirconia (GSZ) was greatly improved and it remained stable at 85%. In particular, almost all the products were isomers of hexane and the selectivity of 2,2-DMB reached 20%. The results of characterization indicated that the addition of gallium onto SZ catalyst showed little difference in acid strength between SZ and GSZ catalysts while the redox properties of the SZ catalyst changed with addition of gallium. The transformation of SZ crystalline from metastable tetragonal phase, the more active phase, to monoclinic phase was retarded with the addition of gallium. Furthermore, the simultaneous promotion of Pt and Ga brings the production distribution very close to the equilibrium one.  相似文献   

7.
This paper investigates the isosynthesis via CO hydrogenation over zirconia and ceria catalysts. Various techniques including XRD, NH3-TPD, CO2-TPD and BET surface area were employed for the catalyst characterization. The results showed that not only acid–base properties, but also crystallite size and crystal phase essentially influenced the catalytic performance. It was found that the activity and the selectivity of isobutene in hydrocarbons on nanoscale catalysts were higher than those on the micronscale ones. Moreover, the acid–base properties were dependent on the fraction of tetragonal phase for zirconia, but independent on crystal phase for ceria. The synthesized nanoscale zirconias were more active than the commercial one but less than the nanoscale ceria. From the results, it was indicated that zirconia with 29% tetragonal phase exhibited the highest activity. Furthermore, the presence of tetragonal phase in zirconia played an important role on the selectivity of isobutene in hydrocarbons.  相似文献   

8.
Sulfated zirconia catalysts are proposed for the reversible hydrolysis of ethyl lactate instead of liquid acids. Sulfated zirconia catalysts were prepared by precipitation-impregnation method. The zirconium hydroxide was produced from zirconium oxychloride by adding aqueous ammonia and then impregnated in sulfuric acid. The solid samples were obtained by filtration and evaporation of the mixtures, respectively. After the samples were calcined, the sulfated zirconia catalysts were prepared. The results showed that the catalyst prepared by evaporation has higher catalytic activity. The physicochemical characteristics of the sulfated zirconia catalysts were studied by thermal analysis, X-ray powder diffraction (XRD), temperature programmed desorption of ammonia (NH3-TPD) and N2 adsorption-desorption, respectively. By the precipitation-impregnation-evaporation method, the optimal sulfated zirconia catalyst of tetragonal phase was prepared under liquid-solid ratio of 5ml/g, 1 mol/L of H2SO4 and calcination at 650 °C for 3 h. The conversion of the ethyl lactate was 87.8% in 3 h at 85 °C with the catalyst loading 2 wt% and initial molar ratio of water to ethyl lactate 20: 1.  相似文献   

9.
A study has been conducted to identify the influence of zirconia phase and copper to zirconia surface area on the activity of Cu/ZrO2 catalysts for the synthesis of methanol from either CO/H2 or CO2/H2. To determine the effects of zirconia phase, a pair of Cu/ZrO2 catalysts was prepared on tetragonal (t-) and monoclinic (m-) zirconia. The zirconia surface area and the Cu dispersion were essentially identical for these two catalysts. At 548 K, 0.65 MPa, and H2/COx= 3 (x = 1, 2), the catalyst prepared on m-ZrO2 was 4.5 times more active for methanol synthesis from CO2/H2 than that prepared on t-ZrO2, and 7.5 times more active when CO/H2 was used as the feed. Increasing the surface area of m-ZrO2 and the ratio of Cu to ZrO2 surface areas further increased the methanol synthesis activity. In situ infrared spectroscopy and transient-response experiments indicate that the higher rate of methanol synthesis from CO2/H2 over Cu/m-ZrO2 is due solely to the higher concentration of active intermediates. By contrast, the higher rate of methanol synthesis from CO/H2 is due to both a higher concentration of surface intermediates and the more rapid dynamics of their transformation over Cu/ZrO2.  相似文献   

10.
Cu/ZnO/ZrO2 catalysts were prepared by a route of solid-state reaction and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts were investigated by N2 adsorption, XRD, TEM, N2O titration and H2-TPR techniques. The results show that the dispersion of copper species decreases with the increase in calcination temperature. Meanwhile, the phase transformation of zirconia from tetragonal to monoclinic was observed. The highest activity was achieved over the catalyst calcined at 400 °C. This method is a promising alternative for the preparation of highly efficient Cu/ZnO/ZrO2 catalysts.  相似文献   

11.
Amorphous yttrium tantalate, as well as solid solutions containing zirconia, transform on heating to a monoclinic-prime phase and then, with further heating, to a crystalline tetragonal (T) solid solution phase at ~1450?°C. On subsequent cooling the tetragonal phase converts by a second-order displacive transformation to a different monoclinic phase not to the monoclinic-prime phase. On subsequent reheating and cooling, the phase transformation occurs between the monoclinic (M) and tetragonal phases, and the monoclinic-prime phase cannot be recovered. The limit of zirconia solubility in both the monoclinic-prime and monoclinic phases lies between 25 and 28?m/o ZrO2, consistent with previous first-principles calculations. The monoclinic-prime phase is stable up to at least 1400?°C for 100?h for zirconia concentrations from 0 to ~60?m/o ZrO2. This temperature exceeds the temperature of the equilibrium M-T phase transformation suggesting that the monoclinic-prime phase transforms directly to the tetragonal phase by a reconstructive transformation and is unaffected by the zirconia in solid solution.  相似文献   

12.
The effect of sulfate on the crystal structure of zirconia   总被引:1,自引:0,他引:1  
Zirconia can be prepared to produce either tetragonal phase or predominantly monoclinic phase upon calcination at 500 °C. The precursors for each phase of zirconias was treated with 1N H2SO4 to produce a sulfated material. The results reveal that sulfation causes the tetragonal phase to be formed for both types of zirconia contrary to the data before sulfation, and sulfation increases the crystallization exotherm by 150 °C.  相似文献   

13.
Monoclinic hydrous-zirconia fine particles that contained cerium(IV) hydroxide (Ce(OH)4) were heated from 200°C to 600°C, to investigate the phase transformation to CeO2-doped tetragonal ZrO2. Both ZrOCl2·8H2O and CeCl3·7H2O were dissolved in aqueous solutions and then boiled to prepare the hydrous-zirconia particles. The Ce(OH)4-containing hydrous-zirconia particles were prepared by adding aqueous ammonia into the boiled solutions. The monoclinic-to-tetragonal ( m right arrow t ) phase transformation of the Ce(OH)4-containing hydrous zirconias was observed at 300°C using X-ray diffraction (XRD). XRD and Brunauer-Emmett-Teller (BET) specific surface area measurements revealed that the Ce(OH)4-containing hydrous zirconias had a tendency to transform from the monoclinic phase to the tetragonal phase at lower temperatures as the primary particle size of the hydrous zirconia decreased and the Ce(OH)4 content increased. These tendencies for the m right arrow t phase transformation agree with the conclusions that have been derived from thermodynamic and kinetic considerations.  相似文献   

14.
A structured catalyst: noble metal supported on a plate-type zirconia substrate was prepared by subjecting a zirconium plate to a process consisting of anodic oxidation in an oxalic acid bath and calcination in the air, followed by rhodium or ruthenium component deposition by the dipping treatment. The catalytic performances of the prepared catalysts were evaluated for steam reforming of n-butane and propane. The substrate surface was significantly corroded by the anodic oxidation and calcination, and a rugged zirconia layer about 100 μm thick was formed. The crystalline state of zirconia was mainly monoclinic and tetragonal. In steam reforming of n-butane, the structured ruthenium catalyst had some activity, while the activity of the rhodium catalyst exceeded that of the commercial catalyst. For the rhodium catalyst, its reforming activity was improved by changing the temperature of dipping bath and the number of dips for adjustment of the rhodium deposition state. The rhodium catalyst prepared by dipping twice at a bath temperature of 25 °C has the largest metal surface area and a higher metal dispersion, which were thought to be the causes for the high performance. In steam reforming of propane, the rhodium catalyst showed a significantly higher activity than the commercial catalyst. The rhodium catalyst was less prone to deterioration of activity due to n-butane and propane reforming.  相似文献   

15.
Perturbed angular correlation spectra of γ-rays emitted following the decay of dilute 181Hf in several zirconia ceramics are reported. Spectra for monoclinic and tetragonal zirconia, a tetragonal zirconia/yttria alloy, a cubic zirconia/yttria alloy, and two mixed tetragonal/cubic-phase zirconia/yttria alloys were measured as a function of temperature to 1470°C. The spectrum observed for each phase has a unique signature, and the spectrum of mixed-phase materials can be used to determine the relative amounts of the different phases. These data give a cubic/(cubic + tetragonal) phase boundary that is somewhat lower in temperature than indicated by current phase diagrams.  相似文献   

16.
《Journal of Catalysis》2002,205(2):309-317
ZrO2-supported La, Mn oxide catalysts with different La, Mn loading (0.7, 2, 4, 6, 12, and 16 wt% as LaMnO3) were prepared by impregnation of tetragonal ZrO2 with equimolar amounts of La and Mn citrate precursors and calcination at 1073 K. The catalysts were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and BET specific surface area determination. The redox properties were tested by temperature-programmed reduction (TPR), and the catalytic tests were carried out for methane combustion at 650–1050 K and for CO oxidation at 350–800 K. XRD revealed the presence of tetragonal zirconia with traces of the monoclinic phase. LaMnO3 perovskite was also detected for loading higher than 6%. XAS and TPR experiments suggested that at high loading small crystallites of LaMnO3, not uniformly spread on the zirconia surface, were formed; while at low loading, La, Mn oxide species interacting with the support, and hard to be structurally defined, prevailed. The catalysis study indicated that the presence of a perovskite-like structure is necessary for the development of highly active sites. Dilute catalysts were in fact poorly active even when considering the activity per gram of La, Mn perovskite-like composition. For methane combustion and CO oxidation, similar trends of the activity as a function of the loading point to a similarity of the active sites for the two reactions on the examined catalytic system.  相似文献   

17.
Alumina-promoted sulfated zirconia was supported on mesoporous molecular sieves of pure-silica MCM-41 and SBA-15. The catalysts were prepared by direct impregnation of metal sulfate onto the as-synthesized MCM-41 and SBA-15 materials, followed by solid state dispersion and thermal decomposition. Measurements of XRD and nitrogen adsorption isotherms showed that the structures of resultant materials retain well-ordered pores, even with ZrO2 loading as high as 50 wt%. The characterization results indicated that most of the promoted sulfated zirconia were well dispersed on the internal surface of the ordered mesopores. The catalytic behavior of the alumina-promoted sulfated zirconia supported on mesoporous silica was studied in n-butane isomerization. The supports of mesoporous structures led to high dispersion of sulfated zirconia in the meta-stable tetragonal phase, which was the catalytic active phase. The high performance of alumina-promoted catalysts was ascribed to the sulfur retention by alumina.  相似文献   

18.
Mesoporous nanocrystalline zirconia with high-surface area and pure tetragonal crystalline phase has been prepared by the surfactant-assisted route, using Pluronic P123 block copolymer surfactant. The synthesized zirconia showed a surface area of 174 m2 g−1 after calcination at 700 °C for 4 h. The prepared zirconia was employed as a support for nickel catalysts in dry reforming reaction. It was found that these catalysts possessed a mesoporous structure and even high-surface area. The activity results indicated that the nickel catalyst showed stable activity for syngas production with a decrease of about 4% in methane conversion after 50 h of reaction. Addition of promoters (CeO2, La2O3 and K2O) to the catalyst improved both the activity and stability of the nickel catalyst, without any decrease in methane conversion after 50 h of reaction.  相似文献   

19.
《Ceramics International》2023,49(8):12258-12266
Zirconia catalysts can selectively convert ethanol to propylene and exhibit excellent catalytic stability. However, the effects of crystalline phase of ZrO2 on the catalyst active sites and catalytic performance have not been fully recognized. In this work, when Y or La was doped into ZrO2, the monoclinic to tetragonal phase transition occurred, and the propylene yields were improved to 44.0% and 42.3%, respectively. The effects of different crystalline phases of ZrO2 on the ethanol to propylene reaction were analyzed by density functional theory. Comparing the monoclinic, tetragonal and cubic phases of ZrO2, the tetragonal phase ZrO2 has the lowest oxygen vacancy formation energy and is likely to form oxygen vacancies to convert ethanol to propylene. Moreover, the adsorption energy of ethanol on tetragonal ZrO2 is moderate, which is not only beneficial to ethanol conversion, but also reduces catalyst deactivation caused by excessive adsorption. Therefore, tetragonal ZrO2 shows practical significance for catalyzing ethanol to propylene.  相似文献   

20.
A series of hydrous zirconia samples were prepared by hydrothermal method and the effects of the properties of hydrous zirconia on the catalytic activity of Pt/WO3-ZrO2 in the hexane isomerization were investigated. The catalysts were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and differential thermal analysis (TDA), H2-temperature programmed reduction (H2-TPR) and NH3-temperature programmed desorption (NH3-TPD). The results showed that the hydrothermal treatment under different times and pH values led to remarkable changes in the properties (such as hydroxyl group, ordering degree and thermal stability) of hydrous zirconia. Moreover, the isomerization activity of Pt/WO3-ZrO2 varied distinctly with the hydrothermal treatment condition of hydrous zirconia. The correlation between the properties of hydrous zirconia and the isomerization activity of the catalyst was primarily established. It was proposed that the isomerization activity was strongly dependent on the stability and ordering degree of hydrous zirconia, while it was irrelevant to the amount of hydroxyl groups in hydrous zirconia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号