首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, high-efficiency packed capillary reversed-phase liquid chromatography (RPLC) coupled on-line with high-performance Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been investigated for the characterization of complex cellular proteolytic digests. Long capillary columns (80-cm) packed with small (3-micron) C18 bonded particles provided a total peak capacity of approximately 1000 for cellular proteolytic polypeptides when interfaced with an ESI-FTICR mass spectrometer under composition gradient conditions at a pressure of 10,000 psi. Large quantities of cellular proteolytic digests (e.g., 500 micrograms) could be loaded onto packed capillaries of 150-micron inner diameter without a significant loss of separation efficiency. Precolumns with suitable inner diameters were found useful for improving the elution reproducibility without a significant loss of separation quality. Porous particle packed capillaries were found to provide better results than those containing nonporous particles because of their higher sample capacity. Two-dimensional analyses from the combination of packed capillary RPLC with high-resolution FTICR yield a combined capacity for separations of > 1 million polypeptide components and simultaneously provided information for the identification of the separated components based upon the accurate mass tag concept previously described.  相似文献   

2.
Silica-based monolithic capillary columns (25 cm x 10 microm i.d.) with integrated nanoESI emitters have been developed to provide high-quality and robust microSPE-nanoLC-ESI-MS analyses. The integrated nanoESI emitter adds no dead volume to the LC separation, allowing stable electrospray operation at flow rates of approximately 10 nL/min. In an initial application with a linear ion trap MS, we identified 5510 unique peptides that covered 1443 distinct Shewanella oneidensis proteins from a 300-ng tryptic digest sample in a single 4-h LC-MS/MS analysis. The use of an integrated monolithic ESI emitter provided enhanced resistance to clogging and provided good run-to-run reproducibility.  相似文献   

3.
The ability to manipulate and effectively utilize small proteomic samples is important for analyses using liquid chromatography (LC) in combination with mass spectrometry (MS) and becomes more challenging for very low flow rates due to extra column volume effects on separation quality. Here we report on the use of commercial switching valves (150-microm channels) for implementing the on-line coupling of capillary LC columns operated at 10,000 psi with relatively large solid-phase extraction (SPE) columns. With the use of optimized column connections, switching modes, and SPE column dimensions, high-efficiency on-line SPE-capillary and nanoscale LC separations were obtained demonstrating peak capacities of approximately 1000 for capillaries having inner diameters between 15 and 150 microm. The on-line coupled SPE columns increased the sample processing capacity by approximately 400-fold for sample solution volume and approximately 10-fold for sample mass. The proteomic applications of this on-line SPE-capillary LC system were evaluated for analysis of both soluble and membrane protein tryptic digests. Using an ion trap tandem MS it was typically feasible to identify 1100-1500 unique peptides in a 5-h analysis. Peptides extracted from the SPE column and then eluted from the LC column covered a hydrophilicity/hydrophobicity range that included an estimated approximately 98% of all tryptic peptides. The SPE-capillary LC implementation also facilitates automation and enables use of both disposable SPE columns and electrospray emitters, providing a robust basis for automated proteomic analyses.  相似文献   

4.
We describe the preparation and performance of high-efficiency 70 cm x 20 microm i.d. silica-based monolithic capillary LC columns. The monolithic columns at a mobile-phase pressure of 5000 psi provide flow rates of approximately 40 nL/min at a linear velocity of approximately 0.24 cm/s. The columns provide a separation peak capacity of approximately 420 in conjunction with both on-line coupling with microsolid-phase extraction and nanoelectrospray ionization-mass spectrometry. Performance was evaluated using a Shewanella oneidensis tryptic digest, and approximately 15-amol detection limits for peptides were obtained using a conventional ion trap and MS/MS for peptide identification. The sensitivity and separation efficiency enabled the identification of 2367 different peptides covering 855 distinct S. oneidensis proteins from a 2.5-microg tryptic digest sample in a single 10-h analysis. The number of identified peptides and proteins approximately doubled when the effective separation time was extended from 200 to 600 min. The number of identified peptides increased from 32 to 390 as the injection amount was increased from 0.5 to 100 ng. Both the run-to-run and column-to-column reproducibility for proteomic analyses were also evaluated.  相似文献   

5.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

6.
We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system using commercial LC pumps was operated at a pressure of 10,000 psi to deliver mobile phases through a novel passive feedback valve arrangement that permitted mobile-phase flow path switching and efficient sample introduction. The multiple-capillary LC system uses several serially connected dual-capillary column devices. The dual-capillary column approach eliminates the time delays for column regeneration (or equilibration) since one capillary column was used for a separation while the other was being washed. Several serially connected dual-capillary columns and electrospray ionization (ESI) sources were operated independently and can be used either for "backup" operation or for parallel operation with other mass spectrometers. This high-efficiency multiple-capillary LC system utilizes switching valves for all operations, enabling automated operation. The separation efficiency of the dual-capillary column arrangement, optimal capillary dimensions (column length and packed particle size), capillary regeneration conditions, and mobile-phase compositions and their compatibility with electrospray ionization were investigated. A high magnetic field (11.4 T) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system using an ESI interface. The capillary LC provided a peak capacity of approximately 650, and the 2-D capillary LC-FTICR analysis provided a combined resolving power of > 6 x 10(7) components. For yeast cytosolic tryptic digests > 100,000 polypeptides were detected, and approximately 1,000 proteins could be characterized from a single capillary LC-FTICR analysis using the high mass measurement accuracy (approximately 1 ppm) of FTICR, and likely more if LC retention time information were also exploited for peptide identification.  相似文献   

7.
An ultralow volume fraction collection system referred to as nano fraction analysis chip technology (nanoFACT) is reported. The system collects 25-2500-nL fractions from 75-microm nanoLC columns into pipet tips at a user-defined, timed interval, typically one fraction every 15-120 s. Following collection, the fractions in the tip dry down naturally on their own in such a way as to create a concentrated band at the very end of the interior of the pipet tip. The fractions are then reconstituted directly in the pipet tips in approximately 250 nL of solvent prior to analysis. Because the chromatography and reconstitution solvent are independent, the reconstitution solvent can be selected to maximize ionization efficiency without compromising chromatography. In the infusion analysis of the nanoLC fractions, a low-flow electrospray chip is used which consists of 400 nozzles, each with an inner diameter of 2.5 microm and yielding flow rates of approximately 20 nL/min. Therefore, when reconstituted in 250 nL, each nanoLC fraction can be analyzed for over 10 min. This increase in analysis time allows for signal averaging, resulting in higher data quality, collision energy optimization, slower scanning techniques to be used, such as neutral loss and precursor ion scanning, higher resolution scans on FTMS instruments, and improved peptide quantitation. Furthermore, the nanoLC fractions could be archived in the pipet tips for analysis at a later date. Here, the advantages of nanoFACT are shown for phosphorylation analysis using bovine fetuin and glycosylation analysis using bovine ribonuclease B (RNase B). In the phosphorylation analysis, a comparison between conventional nanoLC and a nanoFACT analysis was performed. An MS/MS spectrum of a triply phosphorylated peptide, 313-HTFSGVApSVEpSpSSGEAFHVGK-333 could only be obtained using nanoFACT, not with nanoLC. Furthermore, spectral quality for the nanoFACT analysis was significantly improved over nanoLC. This was determined by comparing the number of diagnostic ions between the nanoFACT and nanoLC spectra, and it was found that the nanoFACT spectra contained a 19% or greater number of diagnostic ions for nonphosphorylated peptides and 55% or greater for phosphorylated peptides. For the glycosylation analysis, the glycosylation site of RNase B was fully characterized using 100 fmol of tryptic digest on a three-dimensional ion trap mass spectrometer.  相似文献   

8.
An array of emitters has been developed for increasing the sensitivity of electrospray ionization mass spectrometry (ESI-MS). The linear array consists of 19 chemically etched fused-silica capillaries arranged with 500 microm (center-to-center) spacing. The multiemitter device has a low dead volume to facilitate coupling to capillary liquid chromatography (LC) separations. The high aspect ratio of the emitters enables operation at flow rates as low as 20 nL/min/emitter, effectively extending the benefits of nanoelectrospray to higher flow rate analyses. To accommodate the larger ion current produced by the emitter array, a multicapillary inlet to the mass spectrometer was also constructed. The inlet, which matched the dimensions of the emitter array, preserved ion transmission efficiency. Standard reserpine solutions of varying concentration were electrosprayed at 1 microL/min using the multiemitter/multi-inlet combination, and the results were compared to those from a standard, single-emitter configuration. A 9-fold sensitivity enhancement was observed for the multiemitter relative to the single emitter. A bovine serum albumin tryptic digest was also analyzed, and a sensitivity increase ranging from 2.4- to 12.3-fold for the detected tryptic peptides resulted; the varying response was attributed to reduced ion suppression under the nanoESI conditions afforded by the emitter array. An equimolar mixture of leucine enkephalin and maltopentaose was studied to verify that ion suppression is indeed reduced for the multiplexed ESI (multi-ESI) array relative to a single emitter over a range of flow rates.  相似文献   

9.
Nanoscale packed-capillary liquid chromatography (LC) columns have been coupled with mass spectrometry (MS) using a coaxial continuous-flow fast atom bombardment interface. The combined system has been applied to the analysis of mixtures of peptides, including synthetic mixtures of bioactive peptides and tryptic digests of proteins. Nanoscale packed-capillary columns offer two principal advantages for LC/MS analysis--high chromatographic separation efficiencies and low mobile-phase flow rates. The high separation efficiencies facilitate the separation of complex mixtures, and the low mobile-phase flow rates reduce problems with coupling the LC effluent with the high-vacuum, high-voltage environment of sector MS ion sources. The columns used in this work were 50- or 75-micron i.d., 1-2 m long, packed with 10-micron C18 particles, using mobile-phase flow rates of 50-350 nL/min.  相似文献   

10.
In this study a nano-electrospray emitter is constructed by precisely positioning entrapped octadecylsilane (ODS) particles within a photoinitiated polymer at the exit aperture of a capillary. Following poly-merization, the microsphere/polymer hybrid material is able to withstand pressures greater than 4000 psi for 1 cm length of material. Smaller microspheres (3 microm) patterned at the exit aperture of a capillary generated the most sensitive/stable electrospray from 100 to 1000 nL/min and moderately stable signal under 100 nL/min. Constant infusion of a standard PPG solution from a batch of eleven emitters resulted in a relatively small variance in total ion current (TIC) counts (8%). The entrapped microsphere emitter design yields an emitter that minimizes clogging and eliminates dead volume between the chromatographic bed and the electrospray emitter. The entrapped ODS microspheres can also be used for sample preparation prior to mass spectrometry (MS) analysis. We show the solid-phase extraction and preconcentration of 20-700 fmol of a peptide (leucine enkephalin) prior to MS analysis on an emitter with 1 cm of entrapped microspheres.  相似文献   

11.
A colloidal graphite-coated emitter is introduced for sheathless capillary electrophoresis/nanoelectrospray ionization time-of-flight mass spectrometry (CE/ESI-TOFMS). The conductive coating can be produced by brushing the capillary tip to construct a fine layer of 2-propanol-based colloidal graphite. The fabrication involves a single step and requires less than 2 min. Full cure properties develop in approximately 2 h at room temperature and then the tip is ready for use. The coated capillary tip is applied as a sheathless electrospray emitter. The emitter has proven to bear stable electrospray and excellent performance for 50 microm i.d. x 360 microm o.d. and 20 microm i.d. x 360 microm o.d. capillaries within the flow rate of 80-500 nL/min; continuous electrospray can last for over 200 h in positive mode. Baseline separation and structure elucidation of two clinically interesting basic drugs, risperidone and 9-hydroxyrisperidone, are achieved by coupling pressure-assisted CE to ESI-TOFMS using the described sheathless electrospray emitter with a bare fused-silica capillary at pH 6.7. It is found that the signal intensity of m/z in sheathless CE/ESI-TOFMS at pH 6.7 is approximately 50 times higher than that at pH 9.0 for the two analytes, although the electroosmotic flow (EOF) at pH 9.0 provides sufficient flow rate (approximately 150 nL/min) to maintain electrospray.  相似文献   

12.
We have developed a new procedure for fabricating fused-silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused-silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to, e.g., pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-microm-diameter emitters at a flow rate of 5 nL/min with a high degree of interemitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused-silica capillaries, improving the monolith-assisted electrospray process.  相似文献   

13.
White TP  Wood TD 《Analytical chemistry》2003,75(14):3660-3665
Nanoelectrospray ionization mass spectrometry is an ideal technique for analysis of biomolecules when sample quantities are limited. With the use of this technique, 1-2 microL of sample can be electrosprayed for long time periods (hours) because of the low flow rate (nanoliters per minute) attainable. However, the long-term durability of such emitters has been an impediment to the routine use of nanoelectrospray. The development of longer-lasting nanoelectrospray emitters has often resulted in increasingly complex and tedious fabrication processes. Furthermore, an easily produced, reproducible, and durable nanoelectrospray emitter is the ultimately desired goal. Here, the reproducibility of the inner diameters and geometry for nanoelectrospray emitter glass substrates is assessed using scanning electron microscopy (SEM). The results indicate that provided that glass pulling parameters remain constant, reproducible inner diameters can be produced from glass capillary tubing within the same batch; however, there are interbatch differences. In addition, SEM revealed reproducible taper geometry could also be obtained. Borosilicate and fused-silica nanoelectrospray emitters produced by these protocols were then coated with polyaniline, and their analytical figures of merit were determined using a triple quadrupole mass analyzer. Over a 1-h run, polyaniline-coated emitters showed fairly stable signal with coefficients of variation ranging from 8.92 to 27.6%. Single-scan detection limits below 1 amol were achieved for polyaniline-coated fused-silica emitters for flow rates averaging <10 nL/min. Linear mass spectrometric response with solution concentration was observed for the polyaniline-coated emitters over the range 10 nM-10 microM, with coefficients of variation ranging from 1.44 to 7.26%. This indicates that when nanelectrospray emitter inner diameters are made reproducibly, it is possible to achieve linear quantitative response for nanoelectrospray.  相似文献   

14.
Moini M 《Analytical chemistry》2007,79(11):4241-4246
A robust, reproducible, and single-step interface design between low flow rate separation techniques, such as sheathless capillary electrophoresis (CE) and nanoliquid chromatography (nLC), and mass spectrometry (MS) using electrospray ionization (ESI), is introduced. In this design, the electrical connection to the capillary outlet was achieved through a porous tip at the capillary outlet. The porous section was created by removing 1-1.5 in. of the polyimide coating of the capillary and etching this section by 49% solution of HF until it is porous. The electrical connection to the capillary outlet is achieved simply by inserting the capillary outlet containing the porous tip into the existing ESI needle (metal sheath) and filling the needle with the background electrolyte. Redox reactions of water at the ESI needle and transport of these small ions through the porous tip into the capillary provides the electrical connection for the ESI and for the CE outlet electrode. The etching process reduces the wall thickness of the etched section, including the tip of the capillary, to 5-10 microm, which for a 20-30 microm i.d. capillary results in stable electrospray at approximately 1.5 kV. The design is suitable for interfacing a wide range of capillary sizes with a wide range of flow rates to MS via ESI, but it is especially useful for interfacing narrow (<30 microm i.d.) capillaries and low flow rates (<100 nL/min). The advantages of the porous tip design include the following: (1) its fabrication is reproducible, can be automated, and does not require any mechanical tools. (2) The etching process reduces the tip outer diameter and makes the capillary porous in one step. (3) The interface can be used for both nLC-MS and CE-MS. (4) If blocked or damaged, a small section of the tip can be etched off without any loss of performance. (5) The interface design leaves the capillary inner wall intact and, therefore, does not add any dead volume to the CE-MS or nLC-MS interface. (6) Bubble formation due to redox reactions of water at the high-voltage electrode is outside of the separation capillary and does not affect separation or MS performances. The performance of this interface is demonstrated by the analyses of amino acids, peptide, and protein mixtures.  相似文献   

15.
Coupling low-flow analytical separation instrumentation such as capillary electrophoresis, capillary electrochromatography, nano-HPLC, and microfluidic-based devices with electrospray ionization mass spectrometry has yielded powerful analytical tools. However, conventional coupling methodologies such as nanospray suffer from limitations including poor conductive coating robustness, constant clogging, complicated fabrication processes, and incompatibility with large flow rate regimes. This study demonstrates that robust nanospray emitters can be fabricated through the formation and utilization of a porous polymer monolith (PPM) at the end of a fused-silica capillary. Stable electrosprays can be produced from capillaries (75-100-microm i.d.) at a variety of flow rates (50-1000 nL/min) without the need to taper the capillaries by etching or pulling. The PPM is photopatterned to be present only near the capillary exit aperture using conditions that generate pore sizes similar to those seen with nanospray tips. The porous nature of the PPM aids in developing a stable electrospray generating a single clearly visible Taylor cone at relatively high flow rates while at low flow rates (<100 nL/min) a mist, presumably from multiple small Taylor cones, develops. The hydrophobic nature of the PPM should limit problems with band broadening associated with droplet spreading at the capillary exit, while the multiple flow paths inherent in the PPM minimize clogging problems associated with conventional nanospray emitters. Total ion current traces for a constant infusion of standard PPG and cytochrome c solutions are very stable with deviations ranging from only 3 to 8%. The PPM-assisted electrospray produces mass spectra with excellent signal-to-noise ratios from only a few femtomoles of material.  相似文献   

16.
Capillaries with inner diameters of 550 microm have successfully been packed with 1.5-microm octadecyl silica particles using frits made of macroporous polymers by the UV photopolymerization of a solution of glycidyl methacrylate and trimethylolpropane trimethacrylate. This type of frit is found superior to one made of low-melting point poly(styrene-co-divinylbenzene) beads. Bubble formation is not observed to occur within these capillary columns under our experimental conditions. Separations can be achieved with sample injection volumes as high as 1 microL. To demonstrate its semipreparative use, a mixture of 500 nL of taxol (20 mM) and its precursor, baccatin III (30 mM), is separated using such a column with a Tris buffer.  相似文献   

17.
This work explores the use of 20-microm-i.d. polymeric polystyrene-divinylbenzene monolithic nanocapillary columns for the LC-ESI-MS analysis of tryptic digest peptide mixtures. In contrast to the packing of microparticles, capillary columns were prepared, without the need of high pressure, in fused-silica capillaries, by thermally induced in situ copolymerization of styrene and divinylbenzene. The polymerization conditions and mobile-phase composition were optimized for chromatographic performance leading to efficiencies over 100000 plates/m for peptide separations. High mass sensitivity (approximately 10 amol of peptides) in the MS and MS/MS modes using an ion trap MS was found, a factor of up to 20-fold improvement over 75-microm-i.d. nanocolumns. A wide linear dynamic range (approximately 4 orders of magnitude) was achieved, and good run-to-run and column-to-column reproducibility of isocratic and gradient elution separations were found. As samples, both model proteins and tissue extracts were employed. Gradient nano-LC-MS analysis of a proteolytic digest of a tissue extract, equivalent to a sample size of approximately 1000 cells injected, is presented.  相似文献   

18.
A simple and low-cost pulling device for fused-silica capillaries was developed. By using a tantalum heating filament and the self-tension in a bent capillary, tips and constricted regions with outer diameters of approximately 1 microm and inner diameters of a few hundred nanometers could be reproducibly pulled from 50-microm-i.d., 375-microm-o.d. capillaries. The tips can be used in different applications such as microinjection, micromanipulation, and single-channel patch-clamp, injection ends for CE or as electrospray tips. Constricted capillaries with optimized dimensions to minimize cylindrical lensing effects and to match the size of a diffraction-limited laser focus can be used as optical detection windows in CE and micro-HPLC. Fused silica has several advantages over other glasses such as high melting temperature and superior optical and mechanical properties.  相似文献   

19.
A method with the ability to increase greatly both the resolution and efficiency of a given capillary electrophoretic system is described. This method differs from traditional capillary electrophoresis (CE) in that a counterflow is induced in the direction opposite to the electrokinetic migration of the analyte. This has the effect of extending not only the time the analytes migrate in the electric field but also the effective length and the effective applied voltage of the system. Previous work in our group with flow counterbalanced capillary electrophoresis has utilized an open tube of small inner diameter to reduce peak broadening caused by hydrodynamic flow. Narrow-diameter capillaries (5-10 microm) restricted analysis to fluorescent analytes and laser-induced fluorescence detection. The method described here uses a capillary of much larger inner diameter (75 microm) that has been packed with nonporous silica particles. The packing material reduces the amount of band broadening caused by pressure-induced flow relative to that experienced in an open tube. A larger diameter capillary allows the detection of analytes by UV absorption, not only eliminating the need to tag analytes with fluorescent tags but also allowing for the detection of a much broader range of analytes. The system was evaluated by studying the separations of several enantiomers using only beta-cyclodextrin as the chiral selector. The system was also used to resolve the two naturally occurring isotopes of bromine and to resolve phenylalanine from phenylalanine-d8. Relative to traditional CE, large improvements in resolution and separation efficiency have been achieved with this method.  相似文献   

20.
Proteomics analysis based-on reversed-phase liquid chromatography (RPLC) is widely practiced; however, variations providing cutting-edge RPLC performance have generally not been adopted even though their benefits are well established. Here, we describe an automated format 20 kpsi RPLC system for proteomics and metabolomics that includes on-line coupling of micro-solid phase extraction for sample loading and allows electrospray ionization emitters to be readily replaced. The system uses 50 microm i.d. x 40-200 cm fused-silica capillaries packed with 1.4-3-microm porous C18-bonded silica particles to obtain chromatographic peak capacities of 1000-1500 for complex peptide and metabolite mixtures. This separation quality provided high-confidence identifications of >12 000 different tryptic peptides from >2000 distinct Shewanella oneidensis proteins (approximately 40% of the proteins predicted for the S. oneidensis proteome) in a single 12-h ion trap tandem mass spectrometry (MS/MS) analysis. The protein identification reproducibility approached 90% between replicate experiments. The average protein MS/MS identification rate exceeded 10 proteins/min, and 1207 proteins were identified in 120 min through assignment of 5944 different peptides. The proteomic analysis dynamic range of the 20 kpsi RPLC-ion trap MS/MS was approximately 10(6) based on analyses of a human blood plasma sample, for which 835 distinct proteins were identified with high confidence in a single 12-h run. A single run of the 20 kpsi RPLC-accurate mass MS detected >5000 different compounds from a metabolomics sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号