首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the design of a 5.7–6.4GHz GaAs Heterojunction bipolar transistor (HBT) power amplifier for broadband wireless application such as wireless metropolitan area networks. A bias circuit is proposed which enhances the power gain and provides a good linearity. Using the wideband matching network tech-niques with trap circuits embedded to filter the harmonics and the diode-based linearizing techniques, a broadband power amplifier module was obtained which exhibited a gain above 28dB. This is about 1dB improvement com-pared with those normal bias circuits at a supply volt-age of 5V in the frequency range of 5.7–6.4GHz, measured with Continuous wave(CW) signals. The saturated output power was greater than 33dBm in 5.7–6.4GHz and the out-put 1dB compression point was greater than 31dBm. The phase deviation was less than 5 degrees when the output power below 33dBm. The second and third order harmonic components were also less than -45dBc and -50dBc.  相似文献   

2.
Two D-band transceivers, with and without amplifiers and static frequency divider, transmitting simultaneously in the 80-GHz and 160-GHz bands, are fabricated in SiGe HBT technology. The transceivers feature an 80-GHz quadrature Colpitts oscillator with differential outputs at 160 GHz, a double-balanced Gilbert-cell mixer, 170-GHz amplifiers and broadband 70-GHz to 180-GHz vertically stacked transformers for single-ended to differential conversion. For the transceiver with amplifiers and static frequency divider, which marks the highest level of integration above 100 GHz in silicon, the peak differential down-conversion gain is -3 dB for RF inputs at 165 GHz. The single-ended, 165-GHz transmitter output generates -3.5 dBm, while the 82.5-GHz differential output power is +2.5 dBm. This transceiver occupies 840 mum times 1365 mum, is biased from 3.3 V, and consumes 0.9 W. Two stand-alone 5-stage amplifiers, centered at 140 GHz and 170 GHz, were also fabricated showing 17 dB and 15 dB gain at 140 GHz and 170 GHz, respectively. The saturated output power of the amplifiers is +1 dBm at 130 GHz and 0 dBm at 165 GHz. All circuits were characterized over temperature up to 125degC. These results demonstrate for the first time the feasibility of SiGe BiCMOS technology for circuits in the 100-180-GHz range.  相似文献   

3.
张瑛  李泽有  李鑫  耿萧 《微电子学》2019,49(1):44-48, 54
宽带低噪声放大器是5G无线通信系统中的关键模块。针对6 GHz以下5G通信应用频段,基于65 nm CMOS工艺,设计了一种三级均匀分布式宽带低噪声放大器。在增益单元电路中,采用噪声抵消技术降低了噪声,同时实现了信号的单转双变换,并通过电流复用技术提升了增益。栅极人工传输线的终端采用了RL型负载,进一步改善了放大器的噪声性能。仿真结果表明,该分布式低噪声放大器的带宽为0.5~5.7 GHz,带内增益达到24.2 dB,噪声系数低于4.5 dB,而最小噪声系数仅为2.7 dB。  相似文献   

4.
高长征 《半导体技术》2011,36(11):862-865
介绍了自动电平控制(ALC)放大器的工作原理,研究了组成ALC系统的放大器、衰减器及检波器的特性。采用宽带理论和微波仿真软件,设计了一种2~18 GHz宽带ALC放大器,并给出了测试结果。频率为2~18 GHz,增益大于18 dB,增益平坦度小于3 dB,输入输出驻波比小于2.5,ALC动态范围大于15 dB,输出功率稳定在12.5~13.5 dBm,具有优异的宽带性能及稳定的输出。该宽带ALC放大器采用PHEMT管芯和GaAs MMIC以及微波薄膜工艺,封装在密封的金属盒体中,具有模块化、小型化的特点,应用范围广泛、前景良好。  相似文献   

5.
基于IHP锗硅BiCMOS工艺,研究和实现了两种220 GHz低噪声放大器电路,并将其应用于220 GHz太赫兹无线高速通信收发机电路。一种是220 GHz四级单端共基极低噪声放大电路,每级电路采用了共基极(Common Base, CB)电路结构,利用传输线和金属-绝缘体-金属(Metal-Insulator-Metal, MIM)电容等无源电路元器件构成输入、输出和级间匹配网络。该低噪放电源的电压为1.8 V,功耗为25 mW,在220 GHz频点处实现了16 dB的增益,3 dB带宽达到了27 GHz。另一种是220 GHz四级共射共基差分低噪声放大电路,每级都采用共射共基的电路结构,放大器利用微带传输线和MIM电容构成每级的负载、Marchand-Balun、输入、输出和级间匹配网络等。该低噪放电源的电压为3 V,功耗为234 mW,在224 GHz频点实现了22 dB的增益,3 dB带宽超过6 GHz。这两个低噪声放大器可应用于220 GHz太赫兹无线高速通信收发机电路。  相似文献   

6.
This paper describes millimeter-wave wide-band single-ended and balanced amplifiers using novel multilayer monolithic microwave/millimeter-wave integrated circuit (MMIC) technology. The fundamental characteristics of thin-film transmission lines and a 50-GHz-band multilayer MMIC directional coupler are described through measurements up to 60 GHz. A single-ended amplifier fabricated in a 1.1 mm×0.8 mm area, shows a gain of about 12 dB with a noise figure of better than 5 dB around 50 GHz. A balanced amplifier fabricated using the multilayer MMIC directional couplers and single-ended amplifiers, shows a gain of 10-17 dB with input and output return losses of better than 14 dB from 33 to 53 GHz. The transmission lines and directional couplers can be effectively combined with millimeter-wave active circuits without degrading the circuit performance or increasing the circuit area. To our knowledge, these are the first millimeter-wave active circuits employing multilayer MMIC technology  相似文献   

7.
This paper reports on the design and performance of micromachined Lange-couplers and single-sideband mixers (SSB) on thin dielectric membranes at Ku-band. The micromachined Lange-coupler results in a 3.6±0.8 dB coupling bandwidth from 6.5 to 20 GHz. The Lange-coupler and an interdigital filter are used in a 17-GHz SSB. The SSB mixer requires 1-2 mW of local oscillator (LO) power without dc bias and achieves a 30 dB upper-sideband (USB) image rejection for an IF frequency of 1 GHz and above. The micromachined membrane technology can be easily scaled to millimeter-wave monolithic microwave integrated circuits (MMIC's) to meet the low-cost requirements in automotive or portable communication systems  相似文献   

8.
During recent years significant progress has been made in GaAs technology and the GaAs Schottky-barrier field-effect transistor now shows outstanding microwave gain and noise properties. Two experimental microwave amplifiers demonstrate that the device is very well suited for broad-band applications and that large bandwidth in the X- and Ku-band can be obtained with simple circuits. The first of the two three-stage amplifiers realized was optimized with respect to noise and a noise figure of 3.8 dB was obtained at 8 GHz; the maximum gain is 17.5 dB at 8.3 GHz and the 3-dB bandwidth is 1.3 GHz. The second amplifier has a maximum gain of 11.5 dB at 11.5 GHz. The gain is greater than 8.5 dB in the range 9.5-14.3 GHz.  相似文献   

9.
This paper describes the development of microwave lumped-element thin-film amplifiers. The basic design philosophy underlying lumped inductors and capacitors at microwave frequencies is reviewed, showing how Q's of 100 are achieved. A variety of tunable input, output, and interstage integrated lumped-element networks for transistor amplifiers were fabricated. The gain and efficiency of 2-GHz class-C operated transistors mounted in these circuits were comparable with the best performance achieved by the same transistors in less lossy coaxial circuits. The measured losses (1.2 dB) at 2 GHz were very close to those calculated using the design parameters. Single-stage amplifiers at 2 GHz achieved one watt of output power with 4 dB of gain. At somewhat lower power levels more than 6 dB of gain was achieved. The circuits allowed the operation of low-power level class-A amplifiers with over 13 dB of gain. Cascaded operation yielded more than 17 dB of gain with 0.8 watts of CW power. It is concluded that lumped elements can be fabricated by thin-film technology and will play an important role in microwave integrated circuits.  相似文献   

10.
This paper describes the development of microwave lumped-element thin-film amplifiers.The basic design philosophy underlying lumped inductors and capacitors at microwave frequencies is reviewed, showing how Q's of 100 are achieved. A variety of tunable input, output, and interstage integrated lumped-element networks for transistor amplifiers were fabricated.The gain and efficiency of 2-GHz class-C operated transistors mounted in these circuits were comparable with the best performance achieved by the same transistors in less lossy coaxial circuits. The measured losses (1.2 dB) at 2 GHz were very close to those calculated using the design parameters. Single-stage amplifiers at 2 GHz achieved one watt of output power with 4 dB of gain. At somewhat lower power levels more than 6 dB of gain was achieved. The circuits allowed the operation of low-power level class-A amplifiers with over 13 dB of gain. Cascaded operation yielded more than 17 dB of gain with 0.8 watts of CW power. It is concluded that lumped elements can be fabricated by thin-fihn technology and will play an important role in microwave integrated circuits.  相似文献   

11.
This paper describes the development of microwave lumped-element thin-film amplifiers. The basic design philosophy underlying lumped inductors and capacitors at microwave f requencies is reviewed, showing how Q's of 100 are achieved. A variety of tunable input, output, and interstage integrated lumped-element networks for transistor amplifiers were fabricated. The gain and efficiency of 2-GHz class-C operated transistors mounted in these circuits were comparable with the beat performance achieved by the same transistors in less Iossy coaxial circuits. The measured losses (1.2 dB) at 2 GHz were very close to those calculated using the design parameters. Single-stage amplifiers at 2 GHz achieved one watt of output power with 4 dB of gain. At somewhat lower power levels more than 6 dB of gain was achieved. The circuits allowed the operation of low-power level class-A amplifiers with over 13 dB of gain. Cascaded operation yielded more than 17 dB of gain with 0.8 watts of CW power. It is concluded that lumped elements can be fabricated by thin-film technology and will play an important role in microwave integrated circuits.  相似文献   

12.
设计了一种基于介质集成悬置槽线的宽带差分至单端功分器。采用槽线与微带线耦合的差分过渡结构,实现了差分电路与单端电路的互连。在较宽的工作频率范围内实现了较好的共模噪声抑制。在10.52~15.58 GHz的频率范围内,测得差分端口处的回波损耗优于10 dB。输出端口在10.1~15 GHz的频率范围内保持15 dB以上的隔离度。差分工作模式下,功分器输出的两路信号具有幅值相等、相位相反的特点。所设计的电路基于多层板结构,将槽线及其核心电路悬置于多层板内置的腔体中,具有自封装、低辐射损耗等优势。  相似文献   

13.
A C-band high-dynamic range GaN HEMT low-noise amplifier   总被引:1,自引:0,他引:1  
A C-band low-noise amplifier (LNA) is designed and fabricated using GAN HEMT power devices. The one-stage amplifier has a measured noise figure of 1.6 dB at 6 GHz, with an associated gain of 10.9 dB and IIP3 of 13 dBm. it also exhibits broadband operation from 4-8 GHz with noise figure less than 1.9 dB. The circuit can endure up to 31 dBm power from the input port. Compared to circuits based on other material and technology, the circuit shows comparable noise figure with improved dynamic range and survivability.  相似文献   

14.
A monolithic matched, two-stage wideband amplifier with an insertion gain of 26dB and a ? 3dB bandwidth of 3-2GHz is reported. Optimally designed cascode circuits are used to enhance the gain-bandwidth product available per stage. The IC has been fabricated in a I? depletion GaAs MESFET technology.  相似文献   

15.
Hybrid integrated downconverters which are pumped at half the frequency needed in a conventional downconverter have shown a conversion loss of 3 dB at 50 GHz and 6 dB at 100 GHz with a corresponding single-sideband (SSB) receiver noise figure of 7 dB at 50 GHz and 11 dB at 100 GHz. The circuits are linearly scaled from an optimized 5-GHz model. Each downconverter consists of a stripline conductor pattern, a novel transition from waveguide to stripline, and a Schottky-barrier diode pair. The circuits can be tuned over a useful RF bandwidth of 20 GHz, and they can be readily scaled to other frequency bands.  相似文献   

16.
Thick metal 0.8 µm CMOS technology on high resistivity substrate (RF CMOS technology) is demonstrated for the L-band RF IC applications, and we successfully implemented it to the monolithic 900 MHz and 1.9 GHz CMOS LNAs for the first time. To enhance the performance of the RF circuits, MOSFET layout was optimized for high frequency operation and inductor quality was improved by modifying the technology. The fabricated 1.9 GHz LNA shows a gain of 15.2 dB and a NF of 2.8 dB at DC consumption current of 15 mA that is an excellent noise performance compared with the off-chip matched 1.9 GHz CMOS LNAs. The 900 MHz LNA shows a high gain of 19 dB and NF of 3.2 dB despite of the performance degradation due to the integration of a 26 nH inductor for input match. The proposed RF CMOS technology is a compatible process for analog CMOS ICs, and the monolithic LNAs employing the technology show a good and uniform RF performance in a five inch wafer.  相似文献   

17.
报道了一种基于商用0.15um赝配高电子迁移率晶体管工艺的单片低噪声放大器,工作频率范围为23~36GHz.它采用自偏置结构.对晶体管栅宽进行了优化设计减小栅极电阻,以得到低的噪声系数.采用吸收回路和加电阻电容网络的直流偏置结构提高电路稳定性,用多谐振点方法和负反馈技术扩展带宽.测试结果表明,其噪声系数低于2.0dB,在31GHz处,噪声系数仅为1.6dB.在整个工作频带范崮内,增益大于26dB,输入回波损耗大于11dB,输出回波损耗大于13dB.36GHz处的ldB压缩点输出功率为14dBm.芯片尺寸为2.4mm×1mm.  相似文献   

18.
A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology is demonstrated for the first time. Multiband input matching is achieved by newly developed capacitive feedback instead of traditional inductive feedback technique. The experimental results showed that input return loss of -12, -16, -14, -13, and -12 dB, voltage gain of 29, 27, 24, 23.6, and 22.5 dB and noise figure of 2.89, 2.76, 2.95, 2.98, and 3.1 dB were obtained at 2.4/3.5/4.9/5.2/5.7 GHz, respectively.  相似文献   

19.
Distributed amplifiers were fabricated successfully with a gain of 8 dB+or-1 dB in the frequency range 5-75 GHz measured on-wafer. The associated input and output matching is better than -10 dB. To the authors' knowledge this is a new performance record, not only for GaAs based circuits but also for InP based MMICs. The MMICs were realised in coplanar waveguide technology.<>  相似文献   

20.
A 5.7 GHz downconversion mixer is demonstrated in this letter using 0.35 mum SiGe BiCMOS technology. A quarter-wavelength coupled line and two center-tapped transformers are utilized to generate differential quadrature LO signals. A miniaturized Marchand balun is placed before the common-base-configured RF input stage of each Gilbert mixer to generate balanced RF signals. All the reactive passive elements are placed directly on the standard silicon substrate. The 5.7 GHz downconverter achieves 7 dB conversion gain, 26dBm 1dB, and 18dBm IIP3 at the power consumption of 3.875 mW and 2.5 V supply voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号